

MVI69L-MBTCP
CompactLogix™ Platform

Modbus TCP/IP® Lite

Communication Module

 October 21, 2025

USER MANUAL

MVI69L-MBTCP ♦ CompactLogix™ Platform Contents
Communication Module User Manual

ProSoft Technology, Inc. Page 2 of 139

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions,
comments, compliments or complaints about our products, documentation, or support, please write or call
us.

How to Contact Us

ProSoft Technology, Inc.
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
ps.support@belden.com

MVI69L-MBTCP User Manual
For Public Use.

October 21, 2025

ProSoft Technology® is a Registered Trademark of ProSoft Technology, Inc. All other brand or product
names are or may be trademarks of, and are used to identify products and services of, their respective
owners.

Content Disclaimer
This documentation is not intended as a substitute for and is not to be used for determining suitability or
reliability of these products for specific user applications. It is the duty of any such user or integrator to
perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to
the relevant specific application or use thereof. Neither ProSoft Technology nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. Information in this
document including illustrations, specifications and dimensions may contain technical inaccuracies or
typographical errors. ProSoft Technology makes no warranty or representation as to its accuracy and
assumes no liability for and reserves the right to correct such inaccuracies or errors at any time without
notice. If you have any suggestions for improvements or amendments or have found errors in this
publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical,
including photocopying, without express written permission of ProSoft Technology. All pertinent state,
regional, and local safety regulations must be observed when installing and using this product. For reasons
of safety and to help ensure compliance with documented system data, only the manufacturer should
perform repairs to components. When devices are used for applications with technical safety requirements,
the relevant instructions must be followed. Failure to use ProSoft Technology software or approved software
with our hardware products may result in injury, harm, or improper operating results. Failure to observe this
information can result in injury or equipment damage.

Copyright © 2025 ProSoft Technology, Inc. All Rights Reserved.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer or
supplier for further information.

Prop 65 Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

Agency Approvals & Certifications

Please visit our website: www.prosoft-technology.com

http://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/
http://www.prosoft-technology.com/

MVI69L-MBTCP ♦ CompactLogix™ Platform Contents
Communication Module User Manual

ProSoft Technology, Inc. Page 3 of 139

Contents

Your Feedback Please ... 2
How to Contact Us .. 2

1 Start Here 6

1.1 System Requirements .. 6
1.2 Package Contents .. 7
1.3 Setup Jumper.. 7
1.4 Installing the Module in the Rack .. 8

2 Add-On Instruction 11

2.1 Installing ProSoft Configuration Builder .. 11
2.2 Generating the AOI (.L5X) File in ProSoft Configuration Builder 12

2.2.1 Creating a New Project in PCB ... 12
2.2.2 Exporting the .L5X File from PCB ... 14

2.3 Creating a New RSLogix 5000 Project ... 16
2.4 Creating the Module in an RSLogix 5000 Project... 17

2.4.1 Installing an Add-On Profile .. 17
2.4.2 Creating a Module in the Project Using an Add-On Profile 19
2.4.3 Creating a Module in the Project Using a Generic 1769 Module Profile 22

2.5 Importing the Add-On Instruction .. 25
2.6 Adding Multiple Modules in the Rack (Optional) ... 28

2.6.1 Adding a New Module in PCB .. 28
2.6.2 Adding a new module in RSLogix 5000 .. 30

3 MVI69L-MBTCP Configuration 36

3.1 Basic PCB Functions .. 36
3.1.1 Creating a New PCB Project and Exporting an .L5X File 36
3.1.2 Renaming PCB Objects .. 36
3.1.3 Editing Configuration Parameters ... 37
3.1.4 Printing a Configuration File ... 39

3.2 Module Configuration Parameters .. 40
3.2.1 Module .. 40
3.2.2 MBTCP Servers .. 41
3.2.3 MBTCP Client x .. 43
3.2.4 MBTCP Client x Commands ... 45
3.2.5 Ethernet 1 ... 48
3.2.6 Static ARP Table .. 49

3.3 Downloading the Configuration File to the Processor .. 50
3.4 Uploading the Configuration File from the Processor ... 53

4 Backplane Data Exchange 56

4.1 Backplane Data Transfer .. 57
4.2 Normal Data Transfer ... 58

4.2.1 Write Block: Request from the Processor to the Module .. 58
4.2.2 Read Block: Response from the Module to the Processor 58
4.2.3 Read and Write Block Transfer Sequences ... 59

MVI69L-MBTCP ♦ CompactLogix™ Platform Contents
Communication Module User Manual

ProSoft Technology, Inc. Page 4 of 139

4.3 Data Flow Between the Module and Processor ... 60
4.3.1 Server Driver Overview ... 60
4.3.2 Client Driver Overview .. 62

5 Using Controller Tags 64

5.1 Controller Tags ... 64
5.1.1 MVI69L-MBTCP Controller Tags .. 65

5.2 User-Defined Data Types (UDTs)... 66
5.2.1 MVI69L-MBTCP User-Defined Data Types .. 66

5.3 Controller Tag Overview ... 68
5.3.1 MBTCP.CONFIG .. 68
5.3.2 MBTCP.DATA ... 68
5.3.3 MBTCP.CONTROL ... 69
5.3.4 MBTCP.STATUS .. 74
5.3.5 MBTCP.UTIL ... 77

6 Diagnostics and Troubleshooting 79

6.1 Ethernet LED Indicators .. 79
6.2 LED Status Indicators ... 80

6.2.2 Troubleshooting the LEDs .. 81
6.3 Connecting the PC to the Module's Ethernet Port .. 82

6.3.1 Setting Up a Temporary IP Address ... 83
6.4 Connecting to the Diagnostics Menu in ProSoft Configuration Builder 85

6.4.1 Diagnostics Menu ... 87
6.4.2 Monitoring General Information .. 87
6.4.3 Monitoring Network Configuration Information ... 88
6.4.4 Monitoring Backplane Status Information ... 88
6.4.5 Modbus Server Driver Information .. 89
6.4.6 Monitoring Data Values in the Module’s Database... 90
6.4.7 Modbus Client Driver Information ... 90

6.5 Communication Error Codes .. 91
6.5.1 Standard Modbus Protocol Exception Code Errors .. 91
6.5.2 Module Communication Error Codes ... 91
6.5.3 Command List Entry Errors .. 91
6.5.4 MBTCP Client-Specific Errors .. 91

6.6 Connecting to the Module’s Webpage .. 92

7 Reference 93

7.1 Product Specifications .. 93
7.1.1 General Specifications - Modbus Client/Server .. 93
7.1.2 Hardware Specifications ... 94

7.2 About the Modbus Protocol .. 95
7.2.1 Modbus Client ... 95
7.2.2 Modbus Server.. 95
7.2.3 Commands Supported by the Module .. 96
7.2.4 Read Coil Status (Function Code 01) ... 97
7.2.5 Read Input Status (Function Code 02) ... 99
7.2.6 Read Holding Registers (Function Code 03) .. 100
7.2.7 Read Input Registers (Function Code 04) .. 101
7.2.8 Force Single Coil (Function Code 05) .. 102
7.2.9 Preset Single Register (Function Code 06) .. 103

MVI69L-MBTCP ♦ CompactLogix™ Platform Contents
Communication Module User Manual

ProSoft Technology, Inc. Page 5 of 139

7.2.10 Diagnostics (Function Code 08) ... 104
7.2.11 Force Multiple Coils (Function Code 15) .. 106
7.2.12 Preset Multiple Registers (Function Code 16) .. 107

7.3 Floating-Point Support .. 108
7.3.1 ENRON Floating-Point Support .. 109
7.3.2 Configuring Floating-Point Data Transfer ... 109

7.4 Function Blocks... 115
7.4.1 Event Command Blocks ... 116
7.4.2 Client Status Request/Response Blocks .. 117
7.4.3 Event Sequence Request Blocks ... 118
7.4.4 Event Sequence Command Error Status Blocks .. 119
7.4.5 Get Queue and Event Sequence Block Counts Block ... 120
7.4.6 Command Control Blocks ... 121
7.4.7 Add Event with Data for Client Blocks .. 122
7.4.8 Get Event with Data Status Block ... 123
7.4.9 Get General Module Status Data Block .. 124
7.4.10 Set Driver and Command Active Bits Block ... 126
7.4.11 Get Driver and Command Active Bits Block ... 127
7.4.12 Pass-through Formatted Block for Functions 6 and 16 with Word Data Block 128
7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Float Data Block 129
7.4.14 Pass-through Formatted Block for Function 5 .. 130
7.4.15 Pass-through Formatted Block for Function 15 .. 131
7.4.16 Pass-through Formatted Block for Function 23 .. 132
7.4.17 Pass-through Block for Function 99 ... 133
7.4.18 Set Module Time Using Received Time Block ... 134
7.4.19 Pass Module Time to Processor Block ... 135
7.4.20 Reset Status Block ... 136
7.4.21 Warm-boot Control Block .. 136
7.4.22 Cold-boot Control Block .. 137

7.5 Ethernet Cable Connections ... 138
7.5.1 Ethernet Cable Specifications ... 138
7.5.2 Ethernet Performance ... 138

8 Support, Service & Warranty 139

8.1 Contacting Technical Support ... 139
8.2 Warranty Information .. 139

MVI69L-MBTCP ♦ CompactLogix™ Platform Start Here
Communication Module User Manual

ProSoft Technology, Inc. Page 6 of 139

1 Start Here

To get the most benefit from this User Manual, the user should have the following skills:

• Rockwell Automation® RSLogix™ software: launch the program, configure ladder
logic, and transfer the ladder logic to the processor

• Microsoft Windows: install and launch programs, execute menu commands,
navigate dialog boxes, and enter data

• Hardware installation and wiring: install the module, and safely connect Modbus
and CompactLogix devices to a power source and to the MVI69L-MBTCP module’s
Ethernet port

1.1 System Requirements

The MVI69L-MBTCP module requires the following minimum hardware and software
components:

• Rockwell Automation CompactLogix® processor (firmware version 10 or higher), with
compatible power supply, and one free slot in the rack for the MVI69L-MBTCP
module.

Important: The MVI69L-MBTCP module has a power supply distance rating of 4 (L43 and L45 installations
on first 2 slots of 1769 bus). It consumes 450 mA at 5 Vdc.

• The module requires 450 mA of available 5 Vdc power

• Rockwell Automation RSLogix 5000 programming software version 16 or higher

• Rockwell Automation RSLinx® communication software version 2.51 or higher

• ProSoft Configuration Builder (PCB) (included)

• ProSoft Discovery Service (PDS) (included in PCB)

• Supported operating systems:
o Microsoft Windows 10
o Microsoft Windows 7 Professional (32-or 64-bit)
o Microsoft Windows 2000 Professional with Service Pack 1, 2, or 3

Note: The Hardware and Operating System requirements in this list are the minimum recommended to
install and run software provided by ProSoft Technology®. Other third-party applications may have different
minimum requirements. Refer to the documentation for any third-party applications for system requirements.

MVI69L-MBTCP ♦ CompactLogix™ Platform Start Here
Communication Module User Manual

ProSoft Technology, Inc. Page 7 of 139

1.2 Package Contents

The following components are included with the MVI69L-MBTCP module, and are all
required for installation and configuration.

Important: Before beginning the installation, please verify all of the following items are present.

Qty. Part Name Part Number Part Description

1 MVI69L-MBTCP
Module

MVI69L-MBTCP Modbus communication module

1.3 Setup Jumper

The Setup Jumper acts as "write protection" for the module’s firmware. In "write
protected" mode, the Setup pins are not connected, and the module’s firmware cannot
be overwritten. The module is shipped with the Setup jumper OFF. If an update of the
firmware is needed, apply the Setup jumper to both pins.

The following illustration shows the MVI69L-MBTCP jumper configuration, with the Setup
Jumper OFF.

MVI69L-MBTCP ♦ CompactLogix™ Platform Start Here
Communication Module User Manual

ProSoft Technology, Inc. Page 8 of 139

1.4 Installing the Module in the Rack

Make sure the processor and power supply are installed and configured before installing
the MVI69L-MBTCP module. Refer to the Rockwell Automation product documentation
for installation instructions.

Warning: Please follow all safety instructions when installing this or any other electronic devices. Failure to
follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device to be connected to verify that suitable safety
procedures are in place before installing or servicing the device.

After the jumper placements are verified, insert the MVI69L-MBTCP into the rack. Use
the same technique recommended by Rockwell Automation to remove and install
CompactLogix modules.

Warning: This module is not hot-swappable! Always remove power from the rack before inserting or
removing this module, or damage may result to the module, the processor, or other connected devices.

1 Align the module using the upper and lower tongue-and-groove slots with the
adjacent module and slide forward in the direction of the arrow.

2 Move the module back along the tongue-and-groove slots until the bus connectors
on the MVI69 module and the adjacent module line up with each other.

MVI69L-MBTCP ♦ CompactLogix™ Platform Start Here
Communication Module User Manual

ProSoft Technology, Inc. Page 9 of 139

3 Push the module’s bus lever back slightly to clear the positioning tab and move it
firmly to the left until it clicks. Ensure that it is locked firmly in place.

4 Close all DIN-rail latches.

MVI69L-MBTCP ♦ CompactLogix™ Platform Start Here
Communication Module User Manual

ProSoft Technology, Inc. Page 10 of 139

5 Press the DIN-rail mounting area of the controller against the DIN-rail. The latches
will momentarily open and lock into place.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 11 of 139

2 Add-On Instruction

The .L5X file contains the Add-On Instruction (AOI), user-defined data types, controller
tags and ladder logic required to configure the MVI69L-MBTCP module. This file is
generated by ProSoft Configuration Builder software and imported into RSLogix 5000.

2.1 Installing ProSoft Configuration Builder

The ProSoft Configuration Builder installation file can be found on the product at our
website: www.prosoft-technology.com. The filename contains the version of PCB. For
example, PCB_4.1.0.4.0206.exe

Copy the installation file to the local hard drive and run the PCB.exe file to start the
InstallShield Wizard. Follow the InstallShield Wizard to properly install PCB.

http://www.prosoft-technology.com/

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 12 of 139

2.2 Generating the AOI (.L5X) File in ProSoft Configuration Builder

The following sections describe the steps required to set up a new configuration project
in ProSoft Configuration Builder (PCB), and to export the .L5X file for the project.

2.2.1 Creating a New Project in PCB

To begin, start the PCB software. PCB’s window consists of a tree view on the left, and
an information pane and configuration pane on the right side of the window.

The tree view consists of folders for Default Project and Default Location, with a Default
Module in the Default Location folder. The following illustration shows the ProSoft
Configuration Builder window with a new project.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 13 of 139

To add the MVI69L-MBTCP module to the project

1 In the tree view, right-click DEFAULT MODULE. Select CHOOSE MODULE TYPE from the
shortcut menu. This action opens the Choose Module Type dialog box.

2 In the Product Line Filter area of the dialog box, click the MVI69L radio button. In the

Select Module Type dropdown list, select MVI69L-MBTCP, and click OK to save the
settings and return to the ProSoft Configuration Builder window.

3 The MVI69L-MBTCP module icon will now be visible in the tree view.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 14 of 139

2.2.2 Exporting the .L5X File from PCB

1 Expand the MVI69L-MBTCP icon by clicking the [+] symbol beside it. Similarly,

expand the icon. Double-click the Module icon to open the Edit -
Module dialog box.

2 Edit the Slot Number indicating where the module will be placed in the 1769 bus. The
Slot Number parameter in the PCB configuration affects the format of the .L5X file
that is exported. This parameter identifies the residing slot of the module in the
CompactLogix rack.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 15 of 139

3 Click OK to close the Edit – Module dialog box. The .L5X file is now ready to be

exported to the PC/Laptop.

4 Right-click the MVI69L-MBTCP icon in the project tree and select EXPORT AOI FILE.

5 Save the .L5X file to the PC/Laptop in an easily found location, such as Windows

Desktop.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 16 of 139

2.3 Creating a New RSLogix 5000 Project

1 Open the FILE menu, and select NEW.

2 Select the CompactLogix processer model.

3 Select REVISION 16 or newer.

4 Enter a name for the processor, such as My_Controller.

5 Select the CompactLogix chassis type.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 17 of 139

2.4 Creating the Module in an RSLogix 5000 Project

In an RSLogix 5000 project, an Add-On Profile (AOP) can be used to specifically identify
the MVI69L-MBTCP when selecting the type of module to be installed in slot x. Add-On
Profiles are supported in RSLogix 5000 version 15 and newer.

If using an AOP is not an option, please see page 22 to install the module using a
Generic 1769 Module profile.

2.4.1 Installing an Add-On Profile

1 Download the MPSetup.exe file from the product webpage onto the local hard drive.
Make sure RSLogix 5000 and RSLinx has been shut down before installing the AOP.

2 Run the MPSetup.exe file to start the Setup Wizard. Follow the Setup Wizard to

properly install the AOP.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 18 of 139

3 Continue to follow the steps in the wizard to complete the installation.

4 Click Finish when complete. The AOP is now installed in RSLogix 5000. There is no

need to reboot the PC.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 19 of 139

2.4.2 Creating a Module in the Project Using an Add-On Profile

1 In RSLogix 5000, expand the I/O CONFIGURATION folder in the Project tree. Right-
click the appropriate communications bus and select NEW MODULE from the shortcut
menu.

This action opens the Select Module Type dialog box. In the Module Type Vendor
Filters area, uncheck all boxes except the ProSoft Technology box. A list of
ProSoft Technology modules will appear below.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 20 of 139

2 Select the MVI69L-MBTCP module in the list and click Create:

3 A New Module dialog box will open. Edit the Name and Slot of the module and click

OK.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 21 of 139

The MVI69L-MBTCP module will now be visible at the I/O Configuration tree.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 22 of 139

2.4.3 Creating a Module in the Project Using a Generic 1769 Module Profile

Note: This procedure is not required if the ProSoft Technology AOP is installed.

1 Expand the I/O CONFIGURATION folder in the Project tree. Right-click the appropriate
communications bus and select NEW MODULE.

This action opens the Select Module Type dialog box. Enter generic in the search
text box and select the GENERIC 1769 MODULE. If you're using an earlier version of
RSLogix, expand OTHER in the Select Module dialog box, and then select the
GENERIC 1769 MODULE.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 23 of 139

2 Set the Module Properties values as follows:

Parameter Value

Name Enter a module identification string.

Example: MVI69L_MBTCP

Description Enter a description for the module. Example: ProSoft
communication module for Serial Modbus communications.

Comm Format Select Data-INT

Slot Enter the slot number in the rack where the MV69L-MBTCP
module will be installed.

Input Assembly Instance 101

Input Size 242

Output Assembly Instance 100

Output Size 241

Configuration Assembly Instance 102

Configuration Size 0

This module must be configured with a block transfer size of 240 words (input block
size = 242 words, output block size = 241 words):

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 24 of 139

3 On the Connection tab, set the RPI value for your project. A value of 10.0 ms or
more is recommended. Click OK to confirm.

The MVI69L-MBTCP module will be visible at the I/O Configuration tree.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 25 of 139

2.5 Importing the Add-On Instruction

1 Open the application in RSLogix 5000.

2 Expand the TASKS folder, and expand the MAINTASK folder.

3 Expand the MAINPROGRAM folder. The MAINROUTINE contains rungs of logic. The
very last rung in this routine will be blank. This is where the AOI can be imported.

Note: The Add-On Instruction can be placed in a different routine than the MainRoutine. Make sure to add a
rung with a jump instruction (JSR) in the MainRoutine to jump to the routine containing the Add-On
Instruction.

4 Select an empty rung in the routine. Right-click the rung and select IMPORT RUNGS
from the shortcut menu.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 26 of 139

5 Select the .L5X file that was exported from PCB earlier.

This action opens the Import Configuration dialog box. Click TAGS under
MAINROUTINE to display the controller tags that will be created.

Note: If you are using RSLogix version 16 or earlier, the Import Configuration dialog box will not contain the
Import Content tree.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 27 of 139

6 If the module is not located in the default slot (or is in a remote rack), edit the
connection input and output variables that define the path to the module in the FINAL

NAME column (NAME column for RSLogix version 16 or less). For example, if your
module is located in slot 3, change Local:1:I in the FINAL NAME column to Local:3:I.
Do the same for Local:1:O.

Note: If your module is located in Slot 1 of the local rack, this step is not required.

7 Click OK to confirm the import. RSLogix will indicate that the import is in progress:

When the import is completed, the new rung with the Add-On instruction will be
visible as shown in the following illustration.

The procedure has also imported new user defined data types, data objects and the
Add-On instruction to be used in the project.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 28 of 139

2.6 Adding Multiple Modules in the Rack (Optional)

Important: This procedure is for multiple MVI69L-MBTCP modules running in the same CompactLogix rack.

You must export a new Add-On Instruction from PCB for each module. You do this by
adding a new module to the PCB project and exporting the module configuration as an
L5X file. Finally, import the new .L5X file into RSLogix 5000 for the new module.

2.6.1 Adding a New Module in PCB

1 Right click on Default Location (which you can rename) and select Add Module.

2 Right-click or double-click to open the Choose Module Type window.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 29 of 139

3 Select the MVI69L-MBTCP module to add a second (or more) module in the PCB
project.

Note: A duplicate MVI69L-MBTCP module requires a unique name. The default name on a duplicate
module appends a number to the end such as MVI69L-MBTCP_000, MVI69L-MBTCP_001, etc.

4 You can rename the module by right clicking the module and selecting Rename.

5 Configure the proper parameters in PCB as described before on page 14 and export
the AOI .L5X file.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 30 of 139

2.6.2 Adding a new module in RSLogix 5000

Multiple modules can be placed in the same rack provided it does not exceed the power
distance rating of the CompactLogix rack (see page 6). Adding an additional module to
the rack is similar to installing a new module earlier in this chapter. However, the name
of the module must be unique.

1 In RSLogix 5000, locate the I/O CONFIGURATION folder. Right click to open a shortcut

menu and choose NEW MODULE.

2 In the SELECT MODULE TYPE window, select the MVI69L-MBS module as when
installing the first module using the AOP. If using an AOP is not an option, select
GENERIC 1769 MODULE and click Create.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 31 of 139

3 The NEW MODULE window will appear. Enter a unique name for the new module.

Also confirm the slot number of the new module.

4 Click OK to confirm. The new module is now visible:

5 Importing the AOI for the new module is also required. In the Controller Organizer
pane, double-click and open the MAINROUTINE ladder.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 32 of 139

6 Select an empty rung in the routine, and then click the right mouse button to open a
shortcut menu. On the shortcut menu, choose IMPORT RUNGS…

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 33 of 139

7 Select the .L5X file of the new module, and click IMPORT. The new .L5X file will have
a unique filename.

8 This action opens the IMPORT CONFIGURATION window, showing the tags to be
imported. You must edit the Final Name column of the tags for the second module.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 34 of 139

9 Associate the I/O connection variables to the correct module in the corresponding
slot number. The default values are Local:1:I and Local:1:O. You must edit these
values if the card is placed in a slot location other than slot 1 (Local:1:x means the
card is located in slot 1). Since the second card is placed in slot 2, change the Final
Name to Local:2:I and Local:2:O. Also, you can append a ‘_2’ at the end of the Final
Name of ‘AOI69_MBTCP’ and ‘MBTCP’ arrays as shown below.

MVI69L-MBTCP ♦ CompactLogix™ Platform Add-On Instruction
Communication Module User Manual

ProSoft Technology, Inc. Page 35 of 139

10 Click OK to confirm.

The setup procedure is now complete. Save the project, it is ready to download to the
CompactLogix processor.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 36 of 139

3 MVI69L-MBTCP Configuration

ProSoft Configuration Builder software provides a quick and easy way to manage
module configuration files customized to meet the application needs.

The module’s configuration is built and edited in ProSoft Configuration Builder (PCB).
PCB is used to download the configuration file to the CompactLogix processor, where it
is stored in the MBTCP.CONFIG controller tag generated by the previously exported
AOI. When the MVI69L-MBTCP module boots up, it requests the processor to send it
the configuration over the backplane in special Configuration Blocks.

3.1 Basic PCB Functions

3.1.1 Creating a New PCB Project and Exporting an .L5X File

Please see Chapter 2.

3.1.2 Renaming PCB Objects

PCB objects such as the Default Project and Default Location folders as well as the
Module icon can be renamed to customize the project.

1 Right-click the object to be renamed, and select RENAME from the shortcut menu.
2 Type the name to assign to the object.
3 Click away from the object to save the new name.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 37 of 139

3.1.3 Editing Configuration Parameters

1 Click on the [+] sign next to the MODULE icon to expand module information.

2 Click on the [+] sign next to any icon to view module information and
configuration options.

3 Double-click any icon to open an Edit dialog box.
To edit a parameter, highlight the parameter name in the left pane and edit the field
in the right pane.

Note: Depending on the parameter, the editable field will accept typed input in the form of text or a valid
numerical value, or it will have a dropdown list with options to choose from.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 38 of 139

4 Double-clicking any icon will open an Edit dialog box with a table. This dialog box
is used to build and edit Modbus Client commands.

To add a row to the table, click the ADD ROW button.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 39 of 139

To edit the row, click the EDIT ROW button. This will open an Edit dialog box.

3.1.4 Printing a Configuration File

1 In the main PCB window, right-click the MODULE icon and select VIEW

CONFIGURATION from the shortcut menu. This action opens the View Configuration
window.

2 In the View Configuration window, open the FILE menu, and choose PRINT. This
action opens the Print dialog box.

3 In the Print dialog box, choose the printer to use from the drop-down list, select
printing options, and then click OK.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 40 of 139

3.2 Module Configuration Parameters

3.2.1 Module

This section contains general module configuration parameters, including database
allocation and backplane transfer options.

Parameter Value Description

Module Name ASCII
characters
(max. 38)

Assigns a name to the module that can be viewed using the
configuration/debug port. Use this parameter to identify the module
and the configuration file.

Failure Flag
Count

0 to 65535 Specifies the number of consecutive backplane transfer failures that
can occur before Modbus communications should be halted.

Error/Status
Pointer

-1 to 435 The starting MVI69L-MBTCP database location to store server
error/status data. If a value of -1 is entered, the error/status data will
not be placed in the database.

This feature returns 8 server error/status data values. The
descriptions of these values start at the
MBTCP.STATUS.GeneralStatus.MNETRequestCount controller tag.
Refer to the General Status description on page 76 for more
information.

Initialize Input
Image

Yes or No This parameter is used to determine if the input image data, the

module’s Read Register Data values, should be initialized with Read

Register Data values from the processor. If the value is set to No, the

Read Register Data values in the module will be set to 0 upon

initialization. If the value is set to Yes, the data will be initialized with

Read Register Data values from the processor. Use of this option

requires associated ladder logic to pass the data from the processor

to the module.

Slot Number 1 to x Specifies the module’s slot in the CompactLogix rack.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 41 of 139

3.2.2 MBTCP Servers

This section applies to configuring the MVI69L-MBTCP Server (slave) Driver.

Parameter Value Description

Start Active Yes or No Specifies whether or not the port and commands will be active
upon module boot-up.

Pass-Through
Mode

Client, Server,
or Server with
Pass-Through

This parameter specifies which device type the port will
emulate. Refer to page 60 for more information on the Server
with Pass-Through option.

Float Flag Yes or No Specifies how the Server driver will respond to Function Code
3, 6, and 16 commands (read and write Holding Registers) from
a remote Client when it is moving 32-bit floating-point data.

If the remote Client expects to receive or will send one complete
32-bit floating-point value for each count of one (1), then set this
parameter to YES. When set to YES, the Server driver will return
values from two consecutive 16-bit internal memory registers
(32 total bits) for each count in the read command, or receive
32-bits per count from the Client for write commands. Example:
Count = 10, Server driver will send 20 16-bit registers for 10
total 32-bit floating-point values.

If, however, the remote Client sends a count of two (2) for each
32-bit floating-point value it expects to receive or send, or, if you
do not plan to use floating-point data in your application, then
set this parameter to NO, which is the default setting.

You will also need to set the Float Start and Float Offset
parameters to appropriate values whenever the Float Flag
parameter is set to YES.

Float Start 0 to 478 Defines the first register of floating-point data. All requests with

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 42 of 139

register values greater-than or equal to this value is considered
floating-point data requests. This parameter is only used if the
Float Flag is enabled. For example, if a value of 200 is entered,
all requests for registers 200 and above is considered as
floating-point data.

Float Offset 0 to 478 Defines the start register for floating-point data in the internal
database. This parameter is used only if the Float Flag is
enabled. For example, if the Float Offset value is set to 100 and
the float start parameter is set to 200, data requests for register
200 uses the internal Modbus register 100.

Output Offset 0 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 1, 5 or 15 commands.
For example, if the value is set to 100, an address request of 0
corresponds to register 100 in the database.

Bit Input
Offset

0 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 2 commands. For
example, if the value is set to 150, an address request of 0
returns the value at register 150 in the database.

Holding
Register
Offset

0 to 479 Specifies the offset address in the internal Modbus database for
network requests for Modbus function 3, 6, or 16 commands.
For example, if a value of 250 is entered, a request for address
0 corresponds to the register 250 in the database.

Word Input
Offset

240 to 479 Specifies the offset address into the internal Modbus database
for network requests for Modbus function 4 commands. For
example, if the value is set to 350, an address request of 0
returns the value at register 350 in the database.

Connection
Timeout

0 to 1200 Specifies the Server’s timeout period if it is not receiving any
new data in the amount of seconds preset.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 43 of 139

3.2.3 MBTCP Client x

This section defines the general configuration for MBTCP Client x. Up to 10 MBTCP
Clients can be configured, each using the parameters below.

Parameter Value Description

Enabled Yes or No Enables this client.

Start Active Yes or No Specifies whether to start with commands active on boot up.

Error/Status
Pointer

-1 to 470 The starting MVI69L-MBTCP database location to store Client x’s
error/status data. If a value of -1 is entered, the error/status data will
not be placed in the database.

This feature returns 8 Client x error/status data values. The
descriptions of these values start at the
MBTCP.STATUS.ClientStatus.CommandRequests controller tag.
Refer to the Client Status description on page 74 for more
information.

Command Error
Pointer

-1 to 464 Specifies the address in the module’s database where the command
error data will be placed. If the value is set to -1, the data will not be
transferred to the database. This data should be placed within the
read data range of module memory.

Minimum
Command
Delay

0 to 65535
milliseconds

Specifies the number of milliseconds to wait between receiving the
end of a server's response to the most recently transmitted
command and the issuance of the next command.

This parameter can be used to place a delay after each command to
avoid sending commands on the network faster than the servers can
be ready to receive them. It does not affect retries of a command, as
retries will be issued when a command failure is recognized.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 44 of 139

Response
Timeout

1 to 65535
milliseconds

Specifies the command response timeout period in 1 millisecond
increments. The Client will wait for a response from the addressed
server within the timeout period before re-transmitting the command
(Retries) or skipping to the next command in the Command List.

The value to specify depends on the communication network used
and the expected response time (plus or minus) of the slowest
device on the network.

Retry Count 0 to 10 Specifies the number of times a command will be retried if it fails.

Float Flag Yes or No Specifies how the Slave driver responds to Function Code 3, 6, and
16 commands (read and write Holding Registers) from a remote
Master when it is moving 32-bit floating-point data.

Note: Most applications using floating-point data do not need this
parameter enabled.

If the remote Master expects to receive or sends one complete 32-bit
floating-point value for each count of one (1), then set this parameter
to YES. When set to YES, the Slave driver returns values from two
consecutive 16-bit internal memory registers (32 total bits) for each
count in the read command, or receive 32-bits per count from the
Master for write commands. Example: Count = 10, Slave driver
sends 20 16-bit registers for 10 total 32-bit floating-point values.

If, however, the remote Master sends a count of two (2) for each 32-
bit floating-point value it expects to receive or send, or, if you do not
plan to use floating-point data in your application, then set this
parameter to NO, which is the default setting.

You also need to set the Float Start and Float Offset parameters to
appropriate values whenever the Float Flag parameter is set to YES.

Float Start 0 to 478 Defines the first register of floating-point data. All requests with
register values greater-than or equal to this value is considered
floating-point data requests. This parameter is only used if the Float
Flag is enabled. For example, if a value of 200 is entered, all
requests for registers 200 and above is considered as floating-point
data.

Float Offset 0 to 478 Defines the start register for floating-point data in the internal
database. This parameter is used only if the Float Flag is enabled.
For example, if the Float Offset value is set to 100 and the float start
parameter is set to 200, data requests for register 200 uses the
internal Modbus register 100.

ARP Timeout 1 to 60
seconds

Specifies the number of seconds to wait for an ARP reply after a
request is issued. If the value is out of range, the default value of 5
will be utilized.

Command Error
Delay

0 to 300 Specifies the number of 100 millisecond intervals to turn off a
command in the error list after an error is recognized for the
command. If this parameter is set to 0, there will be no delay.

MBAP Port
Override

Yes or No Override default port settings.

‘No’ = Standard Server Port 502 with MBAP format messages will be
used. All other Server Port values use encapsulated Modbus
message format (RTU via TCP).

‘Yes’ = MBAP format messages are used for all Server Port values.
RTU via TCP will not be used.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 45 of 139

3.2.4 MBTCP Client x Commands

In order to interface the MVI69L-MBTCP module with Modbus server devices, a
command list needs to be created. The commands in the list specify the server device to
be addressed, the function to be performed (read or write), the data area in the device to
interface with and the registers in the internal database to be associated with the device
data.

Each of the 10 Client command lists supports up to 16 commands each. The command
list is processed from top (Command #0) to bottom.

Read commands are executed without condition. Write commands can be set to execute
only if the data in the write command changes (Conditional Enable). If the register data
values in the command have not changed since the command was last issued, the
command will not be executed. This feature can be used to optimize network
performance.

Note: The first command in the Client x Command list cannot be disabled.

The MBTCP Modbus Client (and Server) communication drivers support several data
read and write commands. When a command is configured, the type of data (bit, 16-bit
integer, 32-bit float, etc), and the level of Modbus support in the server equipment will
need to be considered. For information on floating-point support, please see the
Floating-Point Support section on page 108.

Parameter Value Description

Enable Disable,

Enable,

Conditional Bit/Word
Override,

Float Override

This field defines whether the command is to be executed
and under what conditions.

Disable (0) = The command is disabled and will not be
executed in the normal polling sequence.

Enable (1) = The command is executed each scan of the
command list if the Poll Interval (see below) is set to zero.
If the Poll Interval is set to a nonzero value, the command
is executed when the interval timer expires.

Conditional (2) = For write commands only. The
command executes only if the internal data associated
with the command changes.

Bit/Word Override (3) = For read commands only. If a
command error occurs, the module will override the
associated database area with the Override Value Upon
Error parameter value.

Float Override (4) = For read commands only. If a
command error occurs, the module will override the
associated database area (2x word count) with the
Override Value Upon Error parameter value.

Internal
Address

0 to 479 (word-level)

or

0 to 7679 (bit-level)

Specifies the module’s internal database register to be
associated with the command.

If the command is a read function, the data read from the
server device is stored beginning at the module’s internal
database register value entered in this field. This register
value must be within the fixed Read Data area of the
module’s memory 0 to 239 (0 to 3839 bit-level).

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 46 of 139

If the command is a write function, the data to be written
to the server device is sourced beginning from the
module’s internal database register specified. This register
value must be within the fixed Write Data area of the
module’s memory 240 to 479 (3840 to 7679 bit-level).

Note: When using a bit level command, you must define
this field at the bit level. For example, when using function
codes 1 or 2 for a Read command, you must have a enter
of 160 to place the data in the
MBTCP.DATA.ReadData[10] controller tag in RSLogix
5000. Think of it as the 160th bit of MBS internal memory
(MBTCP Internal register 10 * 16 bits per register = 160).
Use this formula for function codes 5 or 15 for writing bits
also.

Poll Interval 0 to 65535

(1/10 second)

Specifies the minimum interval between executions of
continuous commands (Enable code = 1).

Example: The parameter is entered in 1/10th of a second.
Therefore, if a value of 100 is entered, the command
executes no more frequently than every 10 seconds.
When the command reaches the top of the command
queue and 10 seconds has not elapsed, it is skipped until
the poll interval has expired.

Register
Count

1 to 125 (words)

or

1 to 800 (coils)

Specifies the number of registers or digital points to be
associated with the command. Modbus Function Codes 5
and 6 ignore this field as they only apply to a single data
point.

For Modbus Function Codes 1, 2 and 15, this parameter
sets the number of single bit digital points (inputs or coils)
to be associated with the command.

For Modbus Function Codes 3, 4 and 16, this parameter
sets the number of 16-bit registers to be associated with
the command.

Swap Code No Change,

Word Swap,

Word and Byte Swap,

Byte Swap

Defines if the data received from the Modbus server is to
be ordered differently than received from the server
device. This parameter is helpful when dealing with
floating-point or other multi-register values, as there is no
standard method of storage of these data types in server
devices. This parameter can be set to order the register
data received in an order useful by other applications.

No Change = No change is made in the byte ordering
(ABCD = ABCD)

Word Swap = The words are swapped (ABCD= CDAB)

Word and Byte Swap = The words are swapped, then
the bytes in each word are swapped (ABCD=DCBA)

Byte Swap = The bytes in each word are swapped
(ABCD=BADC)

Note: Each pair of characters is a byte. Ex: AB and CD.
Two pairs of characters is 16-bit register Ex: ABCD.

Node IP
Address

xxx.xxx.xxx.xxx Specifies the IP address of the target device being
addressed by the command.

Service Port 1 to 65535 Use a value of 502 when addressing Modbus TCP/IP
servers which are compatible with the Schneider Electric
MBAP specifications (this will be most devices).

If a server implementation supports another service port,
enter the value here. Service Port 2000 is common for

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 47 of 139

encapsulated format messages.

Slave
Address

0 to 255 Mainly used for Modbus TCP/IP to serial conversion, this
specifies the Modbus slave node address on the serial
network to be considered.

If a Modbus TCP/IP server device does not have or need
a slave address, use a value of ‘1’.

If the value is set to zero, the command will be a
broadcast message on the network. The Modbus protocol
permits broadcast commands for write operations. Do not
use this node address for read operations.

Modbus
Function

1,2,3,4,5,6,15,16 Specifies the Modbus function to be executed by the
command. These function codes are defined in the
Modbus protocol.

1 – Read Coil Status (0xxxx)

2 – Read Input Status (1xxxx)

3 – Read Holding Registers (4xxxx)

4 – Read Input Registers (3xxxx)

5 – Force (Write Single) Coil (0xxxx)

6 – Force (Write Single) Holding Register (4xxxx)

15 – Preset (Write) Multiple Coils (0xxxx)

16 – Preset (Write) Multiple Registers (4xxxx)

MB Address
in Device

0 to 479 Specifies the register or digital point address offset within
the Modbus server device. The MBTCP Client will read or
write from/to this address within the server.

Refer to the documentation of each Modbus server device
for their register and digital point address assignments.

Note: The value entered here does not need to include the
“Modbus Prefix” addressing scheme. Also, this value is
an offset of the zero-based Modbus addressing scheme.

Example: Using a Modbus Function Code 3 to read from
address 40010 in the server, a value of ‘9’ would be
entered in this parameter. The firmware (internally) adds
a ‘40001’ offset to the value entered. This is the same for
all Modbus addresses (0x, 1x, 3x, 4x).

Override
Value Upon
Error

 This parameter is only applicable for Enable Codes 3
(Bit/Word Override) or 4 (Float Override).
If an error occurs associated to a read command the
module will automatically populate the associated
database area with this override value.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 48 of 139

3.2.5 Ethernet 1

This section defines the permanent IP address, Subnet Mask, and Gateway of the
module.

Parameter Description

IP Address Unique IP address assigned to the module

Netmask Subnet mask of module

Gateway Gateway (if used)

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 49 of 139

3.2.6 Static ARP Table

This section defines a list of static IP addresses that the module will use when an ARP
(Address Resolution Protocol) is required. The module will accept up to 40 static IP/MAC
Address data sets.

Use the Static ARP table to reduce the amount of network traffic by specifying IP
addresses and their associated MAC (hardware) addresses that the MVI69L-MBTCP
module will be communicating with regularly.

Parameter Value Description

IP Address xxx.xxx.xxx.xxx This table contains a list of static IP addresses that the
module will use when an ARP is required. The module will
accept up to 40 static IP/MAC address data sets.

Important: If the device in the field is changed, this table
must be updated to contain the new MAC address for the
device and downloaded to the module. If the MAC is not
changed, no module communications will be provided.

Hardware MAC
Address

FF.FF.FF.FF.FF.FF This table contains a list of static MAC addresses that the
module will use when an ARP is required. The module will
accept up to 40 static IP/MAC address data sets.

Important: If the device in the field is changed, this table
must be updated to contain the new MAC address for the
device and downloaded to the module. If the MAC is not
changed, no communications with the module will occur.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 50 of 139

3.3 Downloading the Configuration File to the Processor

1 In PCB’s tree view, right-click the module icon and select DOWNLOAD FROM PC TO

DEVICE from the shortcut menu.

2 In the Download Configuration File window, click the RSWHO button.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 51 of 139

3 Browse and highlight the CompactLogix processor and click OK.

Note: DF1 serial download via CIPConnect is not supported. Only use Ethernet or EtherNet/IP drivers via
RSWho.

4 Notice the CIPConnect path has been updated in the Download Configuration File.
Click TEST CONNECTION to verify the path is active and can successfully connect to
the processor.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 52 of 139

5 When ready, click DOWNLOAD to download the configuration file to the processor.
Following the download process, the module will automatically be rebooted.

6 Upon reboot, the ladder logic sends the configuration data from the processor to the

module.

7 When the reboot is complete, the module will start Modbus communications.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 53 of 139

3.4 Uploading the Configuration File from the Processor

1 In PCB’s tree view, right-click the module icon and select UPLOAD FROM DEVICE TO

PC from the shortcut menu.

2 In the Upload Configuration File window, the CIPConnect path should already be
constructed if you have previously downloaded the configuration file from the same
PC. If not, click on the RSWHO button, browse to select the CompactLogix
Processor, and click OK.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 54 of 139

3 Click TEST CONNECTION to verify the path is active and can successfully connect to
the processor.

MVI69L-MBTCP ♦ CompactLogix™ Platform MVI69L-MBTCP Configuration
Communication Module User Manual

ProSoft Technology, Inc. Page 55 of 139

4 When ready, click UPLOAD. When complete, click Close.

5 PCB will now display the uploaded configuration file.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 56 of 139

4 Backplane Data Exchange

Ladder logic is required for the MVI69L-MBTCP module to communicate with the
CompactLogix processor across the backplane. The ladder logic handles the module
data transfer, configuration data transfer, special block handling, and status data receipt.

For most applications, the sample Add-On Instruction (which includes the ladder logic)
will work without modification.

The following topics describe several concepts that are important for understanding the
operation of the MVI69L-MBTCP module.

1 On power up the module begins the following logical functions:

• Initialize hardware components

• Initialize CompactLogix backplane driver

• Test and clear all RAM

2 Read configuration from the CompactLogix processor via ladder logic.

3 Allocate and initialize Module Register space.

4 Enable Modbus TCP/IP Ethernet port.

5 After the module has received the Module Configuration, the module will begin
communicating with other devices on the Modbus network, depending on the
configuration.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 57 of 139

4.1 Backplane Data Transfer

The MVI69L-MBTCP module communicates directly over the CompactLogix backplane.
Data is paged between the module and the CompactLogix processor across the
backplane using the module's input and output images. The update frequency of the
images is determined by the scheduled scan rate defined by the user for the module and
the communication load on the module. Typical updates are in the range of 1 to 10
milliseconds per block of information.

This bi-directional transference of data is accomplished by the module filling in data in
the module's input image to send to the processor. Data in the input image is placed in
the Controller Tags in the processor by the ladder logic. The input image for the module
is 242 words. This data area permits fast throughput of data between the module and
the processor.

The processor inserts data to the module's output image to transfer to the module. The
module's program extracts the data and places it in the module's internal database. The
output image for the module is 241.

The following illustration shows the data transfer method used to move data between the
CompactLogix processor, the MVI69L-MBTCP module and the Modbus Network.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic is needed in the CompactLogix
processor to interface the input and output image data with data defined in the Controller
Tags. All data used by the module is stored in its internal database. This database is
defined as virtual MBTCP data tables with addresses from 0 to 239 each.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 58 of 139

4.2 Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s internal
database and the status data. These data are transferred through read (input image)
and write (output image) blocks. The following topics describe the structure and function
of each block.

4.2.1 Write Block: Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length (words)

0 Write Block ID 1

1 to 240 Write Data 240

The Write Block ID is an index value used to determine the location in the module’s
database where the data will be placed.

4.2.2 Read Block: Response from the Module to the Processor

These blocks of data transfer information from the module to the processor. The
structure of the input image used to transfer this data is shown below:

Offset Description Length (words)

0 Read Block ID 1

1 Write Block ID 1

2 to 241 Read Data 240

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 59 of 139

4.2.3 Read and Write Block Transfer Sequences

There are 240 words of data transferred per block along the backplane between the
module and the processor.

The Write Block ID associated with the block requests data from the processor. Under
normal program operation, the module sequentially sends read blocks and requests
write blocks. The application uses one read and one write block, the sequence is as
follows:

 R1W1→ R1W1→ R1W1→ R1W1→…

This sequence continues until interrupted by other write block numbers sent by the
controller or by a command request from a node on the Modbus network or operator
control through the module’s Ethernet port.

The backplane communication is configured as follows:

Database address 0 to 239 is continuously transferred from the module to the processor.
Database address 240 to 479 is continuously transferred from the processor to the
module.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 60 of 139

4.3 Data Flow Between the Module and Processor

The following topics describe the flow of data between the two pieces of hardware
(CompactLogix processor and MVI69L-MBTCP module) and other nodes on the Modbus
network. The module can act as a Modbus TCP/IP Client (master), Server (slave), or
both simultaneously.

4.3.1 Server Driver Overview

The Server driver allows the MVI69L-MBTCP module to respond to read and write
commands issued by a Client on the Modbus network. The following diagram shows the
data flow for normal server mode.

Step Description

1 Any time the module restarts (boots or reboots), the Server port driver receives
configuration information from the MBTCP controller tags. This information configures the
ethernet port and defines Server driver characteristics. The configuration information may
also contain instructions to offset data stored in the database to addresses different from
addresses requested in the received messages.

2 A Modbus Client device, such as a Modicon PLC or an HMI application, issues a read or
write command to the module’s IP address. The Server driver qualifies the message before
accepting it into the module. Rejected commands will cause an Exception Response.

3 After the module accepts the command, the data is immediately transferred to or from the
module’s internal database. On a read command, the data is read from of the database and
a response message is built. On a write command, the data is written directly into the
database and a response message is built.

4 After Steps 2 and 3 have been completed, either a normal response message or an
Exception Response message is sent to the Client.

5 Counters are available in the Status Block to permit the ladder logic program to determine
the level of activity of the Server driver.

In Server Pass-Through mode, write commands from the Client are handled differently
than they are in Normal mode. In Pass-Through mode, all write requests are passed
directly to the processor and data is not written directly into the module’s database.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 61 of 139

This mode is especially useful when both a Modbus Client and the module’s processor
logic need to be able to read and write values to the same internal database addresses.

The following diagram shows the data flow for a server port with pass-through enabled:

Step Description

1 Same as normal mode.

2 Same as normal mode.

3 a. In Pass-Through mode, if the Server Driver receives a read request, it looks for the
data in module’s internal database, just as it would in Normal mode.

b. The data needed to respond to the read command is retrieved directly from the
internal database and returned to the Server Driver so it can build a response message.

c. In Pass-Through mode, if the Server Driver receives a write request, it does not send
the data directly to the module’s internal database. It puts the data to be written into a
special Input Image with a special Block ID code to identify it as a Pass-Through Write
Block and substitutes this special block in place of the next regular Read Data Block. The
special block is processed by the ladder logic and the data to be written is placed into the
WriteData controller tag array at an address that corresponds to the Modbus Address
received in the write command.

d. During normal backplane communications, the data from the WriteData array,
including the data updated by the Pass-Through Write Block, is sent to the module’s
internal database. This gives the ladder logic the opportunity to also change the values
stored in these addresses, if need be, before they are written to the database.

Note: The ReadData array is not used in Pass-Through mode.

4 Same as normal mode.

5 Same as normal mode.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 62 of 139

4.3.2 Client Driver Overview

In Client mode, the MVI69L-MBTCP module issues read or write commands to server
devices on the Modbus network. These commands are user-configured in ProSoft
Configuration Builder Client Command List. This list is transferred to the module when
the module receives its configuration from the processor.

The commands can also be issued directly from the CompactLogix processor (Special
Command Blocks).

Command status is returned to the processor for each individual command in the
command list. The command status list is user-defined in module memory. Below
describes the flow of command data into and out of the module.

Step Description

1 Upon module boot-up, the Client Driver obtains configuration data from the MBTCP
controller tags. The configuration data obtained includes Ethernet configuration and the
Client Command List.
Special Commands can be issued directly from the CompactLogix processor using Event
Commands and Command Control. These command values are used by the Client
Driver to determine the types and order of commands to send to servers on the network.

2 After configuration, the Client Driver begins transmitting read and/or write commands to
server nodes on the network. If the Client Driver is writing data to a server, the data for
the write command is obtained from the module’s internal database.

3 Once the specified server has successfully processed the command, it will return a
response message to the Client driver for processing.

4 Data received from a server in response to a read command is stored in the module’s
internal database.

5 Status is returned to the processor for each command in the Client Command List.

Important: Take care when constructing each command in the list to ensure predictable operation of the
module. If two commands write to the same internal database address of the module, the results will be
invalid. All commands containing invalid data are ignored by the module.

MVI69L-MBTCP ♦ CompactLogix™ Platform Backplane Data Exchange
Communication Module User Manual

ProSoft Technology, Inc. Page 63 of 139

Client Command List

Up to 10 Modbus TCP/IP Client connections can be defined in the MVI69L-MBTCP.
Each Client connection can contain up to 16 commands each.

A valid command includes the following items:

• Command enable mode: (0) disabled, (1) continuous or (2) conditional for write
commands only

• Source or destination database address: The module’s database address where
data will be written or read.

• Count: The number of words or bits to be transferred – up to 125 words for Function
Codes 3, 4, or 16, and up to 2000 bits for Function Codes 1, 2, or 15.

Note: 125 words is the maximum count allowed by the Modbus protocol. Some field devices may
support less than the full 125 words. Check with the device manufacturer for the maximum count
supported by the server.

• Server IP Address

• Modbus Service Port of the server

• Modbus Function Code: This is the type of command that will be issued.

• Source or destination address in the server device

Command Error Codes

As the list is read in from the processor and as the commands are processed, an error
value is maintained in the module for each command. The definition for these command
error codes is listed on page 91. The command error codes can be viewed in the
Diagnostics window of PCB (Page 87). They can also be transferred from the module’s
database to the processor.

To transfer the Command Error List to the processor, set the Command Error Offset
parameter in the port configuration to a module database address that is in the module’s
Read Data area.

Note: The Command Error List must be placed in the Read Data area of the database (Registers 0 to 239),
so it can be transferred to the processor in the input image.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 64 of 139

5 Using Controller Tags

Ladder logic is required for managing communication between the MVI69L-MBTCP
module and the CompactLogix processor. The ladder logic handles tasks such as:

• Module backplane data transfer

• Special block handling

• Status data receipt

Additionally, a power-up handler may be needed to initialize the module’s database and
may clear some processor fault conditions.

The sample Import Rung with Add-On Instruction is extensively commented to provide
information on the purpose and function of each user-defined data type and controller
tag. For most applications, the Import Rung with Add-On Instruction will work without
modification.

5.1 Controller Tags

Data related to the MVI69L-MBTCP is stored in the ladder logic in variables called
controller tags. Individual controller tags can be grouped into collections of controller
tags called controller tag structures. A controller tag structure can contain any
combination of:

• Individual controller tags

• Controller tag arrays

• Lower-level controller tag structures

The controller tags for the module are pre-programmed into the Add-On Instruction
Import Rung ladder logic. You can find them in the Controller Tags subfolder, located in
the Controller folder in the Controller Organizer pane of the main RSLogix 5000 window.

This controller tag structure is arranged as a tree structure. Individual controller tags are
found at the lowest level of the tree structure. Each individual controller tag is defined to
hold data of a specific type, such as integer or floating-point data. Controller tag
structures are declared with user-defined data types, which are collections of data types.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 65 of 139

5.1.1 MVI69L-MBTCP Controller Tags

The main controller tag structure, MBTCP, is broken down into five lower-level controller
tag structures.

The five lower-level controller tag structures contain other controller tags and controller
tag structures. Click the [+] sign next to any controller tag structure to expand it and view
the next level in the structure.

For example, if you expand the MBTCP.DATA controller tag structure, you will see that it
contains two controller tag arrays, MBTCP.DATA.ReadData and
MBTCP.DATA.WriteData, which are 240-element integer arrays.

The controller tags in the Add-On Instruction are commented in the Description column.

Notice that the Data Type column displays the data types used to declare each controller
tag, controller tag array or controller tag structure. Individual controller tags are declared
with basic data types, such as INT and BOOL. Controller tag arrays are declared with
arrays of basic data types. Controller tag structures are declared with user-defined data
types (UDTs).

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 66 of 139

5.2 User-Defined Data Types (UDTs)

User-defined data types (UDTs) allow users to organize collections of data types into
groupings. These groupings, or data type structures, can then be used to declare the
data types for controller tag structures. Another advantage of defining a UDT is that it
may be re-used in other controller tag structures that use the same data types.

The Add-On Instruction Import Rung ladder logic for the module has pre-defined UDTs.
You can find them in the User-Defined subfolder, located in the Data Types folder in the
Controller Organizer pane of the main RSLogix window. Like the controller tags, the
UDTs are organized in a multiple-level tree structure.

5.2.1 MVI69L-MBTCP User-Defined Data Types

Twenty-two different UDTs are defined for the MVI69L-MBTCP Add-On Instruction.

The main UDT, MBTCPMODULEDEF, contains all the data types for the module and
was used to create the main controller tag structure, MBTCP. There are five UDTs one
level below MBTCPMODULEDEF. These lower-level UDTs were used to create the
MBTCP.CONFIG, MBTCP.DATA, MBTCP.CONTROL, MBTCP.STATUS, and
MBTCP.UTIL controller tag structures.

Click the [+] signs to expand the UDT structures and view lower-level UDTs.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 67 of 139

For example, if you expand MBTCP.DATA, you will see that it contains two UDTs,
ReadData and WriteData. Both of these are 240-element integer arrays.

Notice that these UDTs are the data types used to declare the MBTCP.DATA.ReadData
and MBTCP.DATA.WriteData controller tag arrays.

The UDTs are commented in the Description column.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 68 of 139

5.3 Controller Tag Overview

Tag Name Description

MBTCP.CONFIG Configuration information.

MBTCP.DATA MVI69L-MBTCP input and output data transferred between the
processor and the module.

MBTCP.CONTROL Governs the data movement between the PLC rack and the module.

MBTCP.STATUS Status information.

MBTCP.UTIL Generic tags used for internal ladder processing. (Do not modify)

The following sections describe each of these controller tag structures in more detail.

5.3.1 MBTCP.CONFIG

When PCB downloads the configuration file from the PC to the processor, the
configuration file data and its CRC are stored in this array.

Edits cannot be done directly in this array. All configuration edits must be done in PCB
since a unique CRC is calculated for data integrity. Any change to the configuration
parameters directly in this array will not match the calculated CRC.

Tag Name Description

MBTCP.CONFIG.FileData This parameter contains the MVI69L-MBTCP configuration data after it
has been downloaded from PCB. It is displayed in ASCII format.

Note: MVI69L-MBTCP configuration changes cannot be made directly
in this array; the configuration must be downloaded via PCB.

MBTCP.CONFIG.FileSize Configuration file size (MBTCP.CONFIG.FileData array) in bytes.

MBTCP.CONFIG.FileCRC32 CRC checksum of the configuration file stored in the array.

MBTCP.CONFIG.FileStatus Configuration file status. 0 = No file present, 1 = File present

5.3.2 MBTCP.DATA

This array contains the Read Data and Write Data arrays for processor-to-module
communication.

Tag Name Description

MBTCP.DATA.ReadData Data area copied from the module to the processor. This 240-element
array stores the Modbus data coming into the module from the Modbus
network.

MBTCP.DATA.WriteData Data area copied from the processor to the module. This 240-element
array stores the outgoing data sent from the module to the Modbus
network.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 69 of 139

5.3.3 MBTCP.CONTROL

This array handles special tasks requested by the processor.

5.3.3.1 MBTCP.CONTROL.CommandControl

This array allows the processor to dynamically enable configured commands for
execution.

Tag Name Range Description

.Trigger 0 or 1 Command Control: Disable = 0, Enable = 1

.CommandID 1 to 16 This value represents the number of commands to be requested in the
Command Control block (1 to 16).

.ClientID 0 to 9 Client ID associated with the command to be executed.

.CommandIndex 0 to 15 This array stores the Client x command indexes (Up to 16) to be
executed.

.CmdsAddedToQue -1 or -2 This value is returned from the module. This number of commands
added to the queue.
-1 = Client not enabled and active
-2 = Client index not valid

.CmdInQue Number of Commands in Queue waiting to be executed

5.3.3.2 MBTCP.CONTROL. EventCommand_DBData

This array allows the processor to dynamically build Modbus commands with data
associated to the module’s database. This feature is meant for periodic execution such
as: Resetting clock, zeroing-out counters, etc.

Tag Name Range Description

.Trigger 0 or 1 Toggle to send Event Command.
0 = Disable, 1 = Enable

.ClientID 0 to 9 Client ID associated with the command to be executed

.ServerIPaddress xxx.xxx.xxx.xxx IP address of target Modbus server

.ServicePort 502 or 2000 Service port of target Modbus server

.SlaveAddress 1 to 255 Slave address of target Modbus TCP/IP to serial device, if
applicable

.InternalDBaddress 0 to 479
(word-level)

Or

0 to 3839
(bit-level)

Specifies the module’s internal database register to be
associated with the command. Allowable ranges:

0 to 479 for Modbus Function Codes 3, 4, 6, or 16
0 to 3839 for Modbus Function Codes 1, 2, 5, or 15.

.RegisterCount 1 to 125 (words)
or
1 to 800 (coils)

Specifies the number of registers or digital points to be
associated with the command. Modbus Function Codes 5
and 6 ignore this field; they only apply to a single data point.

.SwapCode 0,1,2,3 Defines if the data received from the Modbus server is to be
ordered differently than received from the server device.
This parameter is helpful when dealing with floating-point or
other multi-register values, as there is no standard method of
storage of these data types in server devices.

.ModbusFC 1,2,3,4,5,6,15,16 Specifies the Modbus function code to be executed.

.DeviceModbusAddress 0 to 9999 Specifies the register or digital point address offset within the
Modbus server device. The MBTCP Client will read or write
from/to this address within the server.

.StatusReturned 0, 1, or -1 0 = Fail

1 = Success

-1 = Client is not Enabled and Active

.CmdInQue Number of Commands in Queue waiting to be executed

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 70 of 139

5.3.3.3 MBTCP.CONTROL.EventCommand_PLCData

This array allows the processor to dynamically build Modbus commands with PLC
processor data. This feature is meant for periodic execution such as a clock reset,
zeroing-out counters, etc.

Tag Name Range Description

.Trigger 0 or 1 Toggle to send Event Command.
0 = Disable, 1 = Enable

.ClientID 0 to 9 Client ID associated with the command to be executed.

.ServerIPaddress xxx.xxx.xxx.xxx IP address of target Modbus server.

.ServicePort 502 or 2000 Service port of target Modbus server.

.SlaveAddress 1 to 255 Slave address of target Modbus TCP/IP to serial device, for
backwards compatibility.

.ModbusFunctionCode 1,2,3,4,5,6,15,
16

Specifies the Modbus function to be executed by the
command.

.DeviceDBAddress 0 to 9999 Specifies the register or digital point address offset within the
Modbus server. The MBTCP Client will read or write from/to
this address within the server.

.PointCount 1 to 125 (words)

or

1 to 800 (coils)

Specifies the number of registers or digital points to be
associated with the command. Modbus Function Codes 5 and
6 ignore this field as they only apply to a single data point.

.Data Specifies the data values associated with the command.

.ErrorStatus Command status after execution.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 71 of 139

5.3.3.4 MBTCP.CONTROL.EventSequenceCommand

This tag array contains the values needed to build one Modbus TCP/IP command, have
it sent to a specific Client on the module, and control the processing of the returned
response block.

Tag Name Range Description

.Trigger 0 or 1 Toggle to send Event Sequence Command.
0 = Disable, 1 = Enable

.ClientID 0 to 19 Client ID associated with the command to be executed.

.ServerIPaddress xxx.xxx.xxx.xxx IP address of target Modbus server.

.ServicePort 502 or 2000 Service port of target Modbus server.

.SlaveAddress 1 to 255 Slave address of target Modbus TCP/IP to serial device, if
applicable.

.InternalDBaddress 0 to 479
(word-level)

or

0 to 3839
(bit-level)

Specifies the module’s internal database register to be
associated with the command. Allowable ranges:

0 to 479 for Modbus Function Codes 3, 4, 6, or 16.

0 to 3839 for Modbus Function Codes 1, 2, 5, or 15.

.RegisterCount 1 to 125 (words)

or

1 to 800 (coils)

Specifies the number of registers or digital points to be
associated with the command. Modbus Function Codes 5
and 6 ignore this field as they only apply to a single data
point.

.SwapCode 0,1,2,3 Defines if the data received from the Modbus server is to be
ordered differently than received from the server device.
This parameter is helpful when dealing with floating-point or
other multi-register values, as there is no standard method
of storage of these data types in server devices.

.ModbusFC 1,2,3,4,5,6,15,
16

Specifies the Modbus function to be executed by the
command.

.DeviceModbusAddress 0 to 9999 Specifies the register or digital point address offset within
the Modbus server device. The MBTCP Client will read or
write from/to this address within the server.

.SequenceNumber Event Sequence Command Number.

.StatusReturned 0, 1, or -1 Event Sequence Command Returned.
 0 = Fail
 1 = Success
-1 = Client disabled /inactive

.CmdInQue Number of Event Sequence commands in queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 72 of 139

5.3.3.5 MBTCP.CONTROL.Time

This array allows the processor to get or set module time.

Tag Name Range Description

MBTCP.CONTROL.Time.SetTime 0 or 1 Sends the PLC time to the module
0 = Disable, 1 = Enable

MBTCP.CONTROL.Time.GetTime 0 or 1 Retrieves the time from the module to PLC
0 = Disable, 1 = Enable

MBTCP.CONTROL.Time.Year 0 to 9999 Four-digit year value. Example: 2014

MBTCP.CONTROL.Time.Month 1 to 12 Month

MBTCP.CONTROL.Time.Day 1 to 31 Day

MBTCP.CONTROL.Time.Hour 0 to 23 Hour

MBTCP.CONTROL.Time.Minute 0 to 59 Minute

MBTCP.CONTROL.Time.Second 0 to 59 Second

MBTCP.CONTROL.Time.Milliseconds 0 to 999 Millisecond

MBTCP.CONTROL.Time.Error 0 or -1 0 = OK, -1 = Error present

5.3.3.6 MBTCP.CONTROL.ClientServerControl

This array allows the control and retrieval of driver command active bits.

Tag Name Range Description

.Trigger 0 or 1 Toggle Client/Server Control.
0 = Disable, 1 = Enable

.ActiveServer 0 or 1 Server active state.
0 = Disable, 1 = Enable

.ActiveClient_0to9 Client 0 to 9 bit map for active status of clients.

.ActiveClientCmd[x] 0 or 1 Client 0 to 9 command active bits. One word for each Client. Each bit
is a command.
0=Disable, 1=Enable

.GetStatus 0 or 1 Toggle request for status.
0 = Disable, 1 = Enable

.ServerStatus 0 or 1 Server active state.
0=Disable, 1= Enable

.Client_0to9Status Client 0 to 9 bit map for active status of clients.

.ClientCmdStatus[x] 0 or 1 Clients 0 to 9 command active bits. One word for each Client. Each bit
is a command.
0=Disable, 1=Enable

5.3.3.7 MBTCP.CONTROL.ResetStatus

This array resets the module along with client and server status tags.

Tag Name Range Description

.Trigger 0 or 1 Toggle reset control.
0 = Disable, 1 = Enable

.Module 0 or x Reset Module status.
0 = No
x = Yes, with any non-zero value

.Server 0 or x Reset Server status.
0 = No
x = Yes, with any non-zero value

.Client 0 or x Reset Client status.
0 = No
x = Yes, with any non-zero value

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 73 of 139

5.3.3.8 MBTCP.CONTROL.EventSequenceCounts

This tag triggers the counting of the event sequence operation.

Tag Name Range Description
MBTCP.CONTROL.EventSequenceCounts 0 or 1 Triggers the counting of Event Sequence

0 = Disable, 1 = Enable

5.3.3.9 MBTCP.CONTROL.EventSequenceStatus

This tag triggers the request for the event sequence status.

Tag Name Range Description
MBTCP.CONTROL.EventSequenceStatus 0 or 1 Triggers Event Sequence Status read

0 = Disable, 1 = Enable

5.3.3.10 MBTCP.CONTROL.GetGeneralStatus

This tag triggers the request for the general status of the module.

Tag Name Range Description
MBTCP.CONTROL.GetGeneralStatus 0 or 1 Triggers general status read

0 = Disable, 1 = Enable

5.3.3.11 MBTCP.CONTROL.GetEventDataStatus

This tag triggers the request of the event status.

Tag Name Range Description
MBTCP.CONTROL.GetEventDataStatus 0 or 1 Triggers Event Status read

0 = Disable, 1 = Enable

5.3.3.12 MBTCP.CONTROL. ColdBoot

This tag triggers the processor to Coldboot the module (full reboot).

Tag Name Range Description

MBTCP.CONTROL.ColdBoot 0 or 1 Triggers a cold boot of the module
0 = Disable, 1 = Enable

5.3.3.13 MBTCP.CONTROL.WarmBoot

This tag triggers the processor to Warmboot the module (driver reboot).

Tag Name Range Description

MBTCP.CONTROL.WarmBoot 0 or 1 Triggers a warm boot the module
0 = Disable, 1 = Enable

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 74 of 139

5.3.4 MBTCP.STATUS

This array contains the status information of the module.

5.3.4.1 MBTCP.STATUS.Block

This array contains the block status.

Tag Name Description

MBTCP.STATUS.Block.Read Total number of read blocks transferred from the module to the
processor.

MBTCP.STATUS.Block.Write Total number of write blocks transferred from the processor to the
module.

MBTCP.STATUS.Block.Parse Total number of blocks successfully parsed were received from the
processor.

MBTCP.STATUS.Block.Event Total number of event command blocks received from the processor.

MBTCP.STATUS.Block.Cmd Total number of command blocks received from the processor.

MBTCP.STATUS.Block.Err Total number of block transfer errors recognized by the module.

5.3.4.2 MBTCP.STATUS.ClientStatus

This array contains the status of a specific MBTCP Client (0 to 9).

Tag Name Description

.Request Initiates request for Client Status block from module when set to 1.

.ClientID Specifies Client (0 to 9) to request status data from.

.CommandRequests Total number of requests made from this port to server devices on the
network.

.CommandResponses Total number of server response messages received on the port.

.CommandErrors Total number of command errors processed on the port. These errors
could be due to a bad response or command.

.Requests Total number of messages sent out of the port.

.Responses Total number of messages received on the port.

.ErrorsReceived Total number of message errors received on the port.

.ErrorsSent Total number of message errors sent out of the port.

.CurrentError Most recent error code recorded for the Client.

.LastError Previous most recent error code recorded for the Client.

.CmdErrors[x] Command error code for each command (0 to15) on the specified
Client's command list.

5.3.4.3 MBTCP.STATUS.EventSeqStatus

This array contains the status of the event command queue.

Tag Name Description

.ClientID Specifies Client (0 to 9) to request event status data from.

.MessageCount Number of Event Sequence Messages in block (0 to 15).

.SeqNum_RetErrCode[x] Sequence Number returned Error Code.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 75 of 139

5.3.4.4 MBTCP.STATUS.EventSeqCounts

This array indicates the number of commands waiting in the command queue.

Tag Name Description

.ClientCmdCount_EventSeqMessage[x] Event command quantity waiting in queue

There are two bytes of status data per Client. See below for
more details.

Byte 1: Number of Event sequence commands for which status has not yet been
retrieved (up to 15). This corresponds to the
MNETC.STATUS.EventSeqCmdPending.Client[x]_QueueCount controller tag.

Byte 2: Total number of commands waiting in the command queue. This includes Event
Commands, Event Commands with Sequence Numbers, and Command Control
messages. This corresponds to the MBTCP.STATUS.EventSeqStatus.MessageCount
controller tag.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 76 of 139

5.3.4.5 MBTCP.STATUS.GeneralStatus

This array contains the general status of the module including firmware revision and
general communication status.

Tag Name Description

.ExpectedWriteBlock Contains the next write block ID number.

.ProgramScanCount Program cycle counter – increments each time a complete program
cycle occurs in the module.

.ProductCode Product code.

.ProductVersion Firmware revision level number.

.OperatingSystem Operating level number.

.RunNumber Run number.

.ReadBlockCount Total number of read blocks transferred from the module to the
processor.

.WriteBlockCount Total number of write blocks transferred from the processor to the
module.

.ParseBlockCount Total number of blocks successfully parsed were received from the
processor.

.CmdEventBlockCount Total number of event command blocks received from the
processor.

.CmdBlockCount Total number of command blocks received from the processor.

.ErrorBlockCount Total number of block transfer errors recognized by the module.

.Client0CmdExecutionWord Each bit in this word is used to enable/disable the commands for
client 0.
0=Disable, 1=Enable

.Client1to9CmdExecutionWord Each bit in each of the 10 words is used to enable/disable the
commands for Clients 1 to 9. 0=Disable, 1=Enable

.EventSeqReady Bit mapped (1 bit per client 0 to 9)
Bit=0, no event sequence status data ready
Bit=1, event sequence status data ready

.MNETRequestCount Increments each time an encapsulated Modbus TCP/IP (Service
port 2000) request is received.

.MNETResponseCount Increments each time an encapsulated Modbus TCP/IP (Service
port 2000) response message is sent.

.MNETErrorSent Increments each time an error is sent from a server on service port
2000.

.MNETErrorReceived Increments each time an error is received from a server on service
port 2000.

.MBAPRequestCount Increments each time an MBAP (Service port 502) request is
received.

.MBAPResponseCount Increments each time an MBAP (Service port 502) response
message is sent.

.MBAPErrorSent Increments each time an error is sent from the server on service
port 502.

.MBAPErrorReceived Increments each time an error is received from a server on service
port 502.

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 77 of 139

5.3.4.6 MBTCP.STATUS.GetEventDataStatus

This array contains the status of the event command last executed.

Tag Name Description

.ClientRecordsCount Number of clients contained in the block.

.Status Two words per Client.
Word 1 = Client (0 to 9)
Word 2 = Error code for last executed command for
corresponding client.

5.3.5 MBTCP.UTIL

The array is used for internal ladder processing. It should not be modified.

Tag Name Description

.ReadDataSizeGet Read Block transfer size (240).

.WriteDataSizeGet Write Block transfer size (240).

.ReadDataBlkCount Number of Read Data blocks (1).

.WriteDataBlkCount Number of Write Data blocks (1).

.RBTSremainder Not used for this module.

.WBTSremainder Not used for this module.

.BlockIndex Not used for this module.

.LastRead Latest Read Block ID received from the module. (0 or 1)

.LastWrite Latest Write Block ID to be sent to the module. (0 or 1)

.LastWriteInit Latest Write Block ID used during initialization.

.ConfigFile [] This array holds variables for configuration file transfer.

.ConfigFile.WordLength Length of configuration data to be included in block transfer.

.ConfigFile.BlockCount Block transfer count for transferring the whole configuration
file from PLC to the Module.

.ConfigFile.FileOffset Offset in configuration file to use as a starting point for
copying over configuration data.

.ConnectionInputSize Size of Connection Input array (242).

.BlockTransferSize Size of backplane transfer blocks (240).

.SlotNumber Slot number of the module in the rack.

.CommandControlPending Waiting for response from module.

.CommandControlWriteBlockID Block ID for Command Control.

.EventCommandDBDataPending Keeps an Event Command with Data message from being
sent to the module before the previous Event Command with
Data is completed.

.EventCmd_DBDataBlockID Block ID of last read block.

.EventCmd_DBDataWriteEventBlockID Event response write block ID.

.EventCmd_ProcessorDataPending Event Command Processor Data Pending. Yes (0) or No (1)

.EventCmd_ProcessorDataBlockID Event Command processor data block ID.

.EventSeqCmdPending Event Sequence Command Pending.
Yes (0) or No (1)

.EventSeqCmdBlockID Event Sequence Command Block ID.

.EventSeqCmdWriteEventBlockID Event Sequence Command Write Event Block ID.

.PassThrough Array Holds variables used for processing pass-through messages.

.ClientServerControlBlockID Client and Server Control Block ID.

.ClientStatusPending Client Status Pending.
Yes (0) or No (1)

.ClientStatusWriteBlockID Client Status Write Block ID.

.EventSeqStatusPending Event Sequence Status Pending.
Yes (0) or No (1)

MVI69L-MBTCP ♦ CompactLogix™ Platform Using Controller Tags
Communication Module User Manual

ProSoft Technology, Inc. Page 78 of 139

.EventSeqStatusWriteBlockID Event Sequence Status Write Block ID.

.EventSeqCountsWriteBlockID Event Sequence Counts Write Block ID.

.EventSeqCountsPending Event Sequence Counts Pending.
Yes (0) or No (1)

.TimeWriteBlockID Time Write Block ID.

.ResetStatusWriteBlockID Reset Status Write Block ID.

.GetEventDataStatusBlockID Get Event Data Status Block ID.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 79 of 139

6 Diagnostics and Troubleshooting

The module provides information on diagnostics and troubleshooting in the following
forms:

• LED status indicators on the front of the module provide information on the module’s
status.

• Status data contained in the module can be viewed in ProSoft Configuration Builder
through the Ethernet port.

• Status data values are transferred from the module to the processor.

6.1 Ethernet LED Indicators

The Ethernet LEDs indicate the module's Ethernet port status as follows:

LED State Description

Data OFF Ethernet connected at 10Mbps duplex speed.

 Amber Solid Ethernet connected at 100Mbps duplex speed.

Link OFF No physical network connection is detected. No Ethernet
communication is possible. Check wiring and cables.

 Green Solid or
Flashing

Physical network connection detected. This LED must be ON solid
for Ethernet communication to be possible.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 80 of 139

6.2 LED Status Indicators

ETH CFG

CLT BP

SRV OK

The LEDs indicate the module’s operating status as follows:

LED Color Indication

ETH Green Application is running and Ethernet is ready

Off Application is not running

CLT Red Exception response received from the server; bad address, command, etc.

SRV Red Exception message received from the client

Green Configuration is OK

Amber Configuration state

Off Application is not running or backplane has failed

BP Red Processor is not in RUN mode

Green (Flashing) BP transfer is operational

Amber Initialization state

Off Application is not running

OK Red Application is not running

 Green Application is running

During module configuration, the OK LED will be red and the BP LED will be on. If the
BP ACT and OK LEDs blink at a rate of every one-second, this indicates a serious
problem with the module. Call ProSoft Technology technical support to arrange for
repairs.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 81 of 139

6.2.1 Clearing a Fault Condition

Typically, if the OK LED on the front of the module remains RED for more than ten
seconds, a hardware problem has been detected or the program has exited.

To clear the condition, follow these steps:

1 Turn off power to the rack.
2 Remove the card from the rack.
3 Verify all jumpers are set correctly.
4 Re-insert the card in the rack and turn the power back on.
5 Verify correct configuration data is being transferred to the module from the

CompactLogix controller.

If the module's OK LED does not turn GREEN, verify that the module is inserted
completely into the rack. If this does not cure the problem, contact ProSoft Technology
Technical Support.

6.2.2 Troubleshooting the LEDs

Use the following troubleshooting steps if problems occur when the module is powered
up. If these steps do not resolve the problem, please contact ProSoft Technology
Technical Support.

Processor Errors

Problem Description Steps to take

Processor Fault Verify the module is securely plugged into the slot that has been configured for
it in the I/O Configuration of RSLogix.

Verify the slot location in the rack has been configured correctly in the ladder
logic.

Processor I/O LED
flashes

This indicates a problem with backplane communications. A problem could
exist between the processor and any installed I/O module, not just the
MVI69L-MBTCP. Verify all modules in the rack are configured correctly.

Module Errors

Problem Description Steps to take

BP LED remains OFF
or blinks slowly

This indicates that backplane transfer operations are failing. Connect to the
module’s Configuration/Debug port to check this.

To establish backplane communications, verify the following items:

▪ The processor is in RUN or REM RUN mode.

▪ The backplane driver is loaded in the module.

▪ The module is configured for read and write data block transfer.

▪ The ladder logic handles all read and write block situations.

▪ The module is properly configured in the processor I/O configuration and
ladder logic.

OK LED remains Red The program has halted or a critical error has occurred. Connect to the
communication port to see if the module is running. If the program has halted,
turn off power to the rack, remove the card from the rack and re-insert the card
in the rack, and then restore power to the rack.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 82 of 139

6.3 Connecting the PC to the Module's Ethernet Port

With the module securely mounted, connect one end of the Ethernet cable to the ETH1
Port, and the other end to an Ethernet hub or switch accessible from the same network
as the PC. Or, connect directly from the Ethernet Port on the PC to the ETH 1 Port on
the module.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 83 of 139

6.3.1 Setting Up a Temporary IP Address

Important: ProSoft Configuration Builder locates MVI69L-MBTCP modules through UDP broadcast
messages. These messages may be blocked by routers or layer 3 switches. In that case, ProSoft Discovery
Service will be unable to locate the modules.

To use ProSoft Configuration Builder, arrange the Ethernet connection so that there is no router/ layer 3
switch between the computer and the module, OR reconfigure the router/ layer 3 switch to allow routing of
the UDP broadcast messages.

1 In the tree view in ProSoft Configuration Builder (PCB), select the MVI69L-MBTCP

module. (For instructions on opening and using a project in PCB, please refer to
Chapter 2.)

2 Click the right mouse button to open a shortcut menu. On the shortcut menu, choose
DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 84 of 139

4 In the Connection Setup dialog box, click the BROWSE DEVICE(S) button to open the
ProSoft Discovery Service. Select the module, then right-click and choose ASSIGN

TEMPORARY IP.

5 The module’s default IP address is usually 192.168.0.250. Choose an unused IP
within your subnet, and then click OK.

Important: The temporary IP address is only valid until the next time the module is initialized. For
information on how to set the module’s permanent IP address, see page 48.

6 Close the ProSoft Discovery Service window. Enter the temporary IP address in the
Ethernet address field of the Connection Setup dialog box, then click the TEST

CONNECTION button to verify that the module is accessible with the current settings.

7 If the Test Connection is successful, click CONNECT. The Diagnostics menu will

display in the Diagnostics window. At this point, the module has been established on
the Ethernet network with a unique IP address.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 85 of 139

6.4 Connecting to the Diagnostics Menu in ProSoft Configuration Builder

ProSoft Configuration Builder (PCB) provides diagnostic menus for debugging and
troubleshooting.

To connect to the module’s Configuration/Debug Ethernet port:

1 In ProSoft Configuration Builder, select the module, and then click the right mouse
button to open a shortcut menu.

2 On the shortcut menu, choose DIAGNOSTICS.

3 After the Diagnostics window opens, click the SETUP CONNECTION button to browse
for the module’s IP address.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 86 of 139

4 In the Ethernet field of the Connection Setup dialog box, enter the current IP
address, whether it is temporary or permanent. Click the TEST CONNECTION button to
verify that the module is accessible with the current settings.

5 If the Test Connection is successful, click CONNECT. The Diagnostics window is now
accessible.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 87 of 139

6.4.1 Diagnostics Menu

The Diagnostics menu is available through the Ethernet configuration port. The menu is
arranged as a tree structure.

6.4.2 Monitoring General Information

Use the MODULE>Version menu to view module version information.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 88 of 139

6.4.3 Monitoring Network Configuration Information

Use the MODULE>NIC Status menu to view the Ethernet network configuration
information.

6.4.4 Monitoring Backplane Status Information

Use the BACKPLANE>Status menu to view the backplane information.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 89 of 139

6.4.5 Modbus Server Driver Information

The SERVERS menu includes the following submenus:

• Module Server Configuration

• Module Server Status

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 90 of 139

6.4.6 Monitoring Data Values in the Module’s Database

Use the DATABASE>Decimal menu to view the contents of the MVI69L-MBTCP
module’s internal database. Data values can also be viewed in ASCII, Hexadecimal, and
Float format.

6.4.7 Modbus Client Driver Information

The MBTCP CLIENT X menus include the following submenus:

• Client x Configuration

• Client x Status

• Client x Command List

• Client x Command Status

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 91 of 139

6.5 Communication Error Codes

6.5.1 Standard Modbus Protocol Exception Code Errors

Code Description

1 Illegal Function Code

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

6.5.2 Module Communication Error Codes

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-11 Timeout waiting for response after request

253 Incorrect slave address in response

254 Incorrect function code in response

255 Invalid CRC/LRC value in response

6.5.3 Command List Entry Errors

Code Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid node address (< 0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 Invalid swap code

6.5.4 MBTCP Client-Specific Errors

Code Description

-33 Failed to connect to server specified in command

-36 MBTCP command response timeout

-37 TCP/IP connection ended before session finished

Note: If an error code is reported that is not listed above, check with the documentation of the end device.
Device-specific error codes can be produced by the end device.

MVI69L-MBTCP ♦ CompactLogix™ Platform Diagnostics and Troubleshooting
Communication Module User Manual

ProSoft Technology, Inc. Page 92 of 139

6.6 Connecting to the Module’s Webpage

The module's internal web server provides access to module version and status
information, as well as the ability to set the date and time, reboot the module, and
download firmware upgrade to the module. Once an IP address has been assigned to
the module, access to the webpage can be done in a web browser.

Connectivity can also be done using ProSoft Discovery Service in PCB Connection
Setup menu shown below.

1 In ProSoft Discovery Service, right-click the icon to open a shortcut menu.

2 On the shortcut menu, choose VIEW MODULE’S WEBPAGE. It will launch your default
web browser and open the webpage.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 93 of 139

7 Reference

7.1 Product Specifications

The MVI69L-MBTCP (Modbus TCP/IP Communication Module) allows Rockwell
Automation CompactLogix I/O compatible processors to interface easily with other
Modbus TCP/IP protocol compatible devices.

The module acts as an input/output communications module between the Modbus
TCP/IP network and the CompactLogix backplane. The data transfer from the
CompactLogix processor is asynchronous from the actions on the Modbus TCP/IP
network. Databases are user-defined and stored in the module to hold the data required
by the protocol.

• Single-slot, 1769 backplane-compatible

• Ladder Logic is used for data transfer between module and processor. Sample Add-
On Instruction file included.

• Configuration data obtained from and stored in the processor.

• Supports CompactLogix processors with 1769 I/O bus capability and at least 500 mA
of 5 Vdc backplane current available.

7.1.1 General Specifications - Modbus Client/Server

Specification Description

Communication
parameters

Supports Modbus MBAP and encapsulated (Server) messaging

10/100 Base-T Ethernet-compatible interface

Modbus Modes Client driver supports up to ten connections for active reading
and writing of data with Modbus TCP/IP compatible devices

Server driver supports one Modbus TCP/IP Client connection
using Service Port 502 with standard MBAP messaging, and one
Modbus RTU/ASCII Client connection on Service Port 2000 (and
others)

Floating Point
Data

Floating point data movement supported, including configurable
support for Enron, Daniel®, and other implementations

Modbus Function
Codes Supported

1: Read Coil Status
2: Read Input Status
3: Read Holding Registers
4: Read Input Registers
5: Force (Write) Single Coil
6: Preset (Write) Single
 Holding Register
8: Diagnostics (Server Only,
 Responds to
 Subfunction 00)

15: Force(Write) Multiple Coils
16: Preset (Write) Multiple
 Holding Registers
17: Report Server ID (Server
Only)

22: Mask Write Holding
 Register (Server Only)
23: Read/Write Holding
 Registers (Server Only)

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 94 of 139

7.1.2 Hardware Specifications

Specification Description

Dimensions Standard 1769 Single-slot module

Current Load 500 mA max @ 5 VDC

Power supply distance rating of 4 (L43 and L45
installations on first 2 slots of 1769 bus)

Operating Temp. 32° F to 140° F (0° C to 60°C)

Storage Temp. -40° F to 185° F (-40° C to 85° C)

Relative Humidity 5% to 95% (with no condensation)

LED Indicators Module OK Status

Backplane Activity

Ethernet Port Activity

Configuration Activity

Application/Diagnostics Port
(ETH 1)

Diagnostics over Ethernet connection

RJ45 Port

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 95 of 139

7.2 About the Modbus Protocol

Modbus is a widely-used protocol originally developed by Modicon in 1978. Since that
time, the protocol has been adopted as a standard throughout the automation industry.

Modbus TCP/IP is a Client/Server protocol. The Client establishes a connection to the
remote Server. When the connection is established, the Client sends the Modbus
commands to the Server. The MVI69L-MBTCP module can work as a Client and as a
Server.

The MVI69L-MBTCP module also works as an input/output module between itself and
the Rockwell Automation backplane and processor. The module uses an internal
database to pass data and commands between the processor and Client and Server
devices on Modbus networks.

7.2.1 Modbus Client

The MVI69L-MBTCP Modbus Client actively issues Modbus commands to Modbus
servers on the Modbus TCP/IP network, supporting up to 16 commands for each Client.
The Clients have an optimized polling characteristic that polls servers with
communication problems less frequently.

Command List Up to 16 commands per Client, each fully configurable for function,
server IP address, register to/from addressing and word/bit count.

Polling of command list Configurable polling of command list, including continuous and on
change of data, and dynamically user or automatic enabled.

Status Data Error codes available on an individual command basis. In addition, a
server status list is maintained per active Modbus Client.

7.2.2 Modbus Server

The MVI69L-MBTCP Modbus Server driver permits a remote Client to interact with all
data contained in the module. This data can be derived from other Modbus server
devices on the network, through a Client port, or from the CompactLogix processor.

Service Port MBAP messaging on Service Port 502

Encapsulated messaging on Service Port 2000

Status Data Error codes, counters and port status available

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 96 of 139

7.2.3 Commands Supported by the Module

The format of each command in the list depends on the Modbus Function Code being
executed. The following table lists the Function Codes supported by the module.

Function Code Definition Supported as Client Supported as Server

1 Read Coil Status 0x X X

2 Read Input Status 1x X X

3 Read Holding Registers 4x X X

4 Read Input Registers 3x X X

5 Set Single Coil 0x X X

6 Single Register Write 4x X X

8 Diagnostics X

15 Multiple Coil Write 0x X X

16 Multiple Register Write 4x X X

17 Report Server ID X

22 Mask Write 4X X

23 Read/Write X

Each command list record has the same general format. The first part of the record
contains the information relating to the communication module and the second part
contains information required to interface to the Modbus server device.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 97 of 139

7.2.4 Read Coil Status (Function Code 01)

Query

This function allows the user to obtain the ON/OFF status of logic coils (Modbus 0x
range) used to control discrete outputs from the addressed Server only. Broadcast mode
is not supported with this function code. In addition to the Server address and function
fields, the message requires that the information field contain the initial coil address to
be read (Starting Address) and the number of locations that will be interrogated to obtain
status data.

The addressing allows up to 2000 coils to be obtained at each request; however, the
specific Server device may have restrictions that lower the maximum quantity. The coils
are numbered from zero; (coil number 1 = zero, coil number 2 = one, coil number 3 =
two, and so on).

The following table is a sample read output status request to read coils 0020 to 0056 (37
coils) from Server device number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below
are in hexadecimal display

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check
Field (2 bytes)

0B 01 00 13 00 25 CRC

Response

The data is packed one bit for each coil. The response includes the Server address,
function code, quantity of data characters, the data characters, and error checking. Data
will be packed with one bit for each coil (1 = ON, 0 = OFF). The low order bit of the first
character contains the addressed coil, and the remainder follows. For coil quantities that
are not even multiples of eight, the last characters will be filled in with zeros at high order
end. The quantity of data characters is always specified as quantity of RTU characters,
that is, the number is the same whether RTU or ASCII is used.

Because the Server interface device is serviced at the end of a controller's scan, data
will reflect coil status at the end of the scan. Some Servers will limit the quantity of coils
provided each scan; thus, for large coil quantities, multiple PC transactions must be
made using coil status from sequential scans.

Node
Address

Func
Code

Byte
Count

Data Coil
Status 20
to 27

Data Coil
Status 28
to 35

Data Coil
Status 36
to 43

Data Coil
Status 44
to 51

Data Coil
Status 52
to 56

Error Check
Field (2
bytes)

0B 01 05 CD 6B B2 OE 1B CRC

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 98 of 139

The status of coils 20 to 27 is shown as CD (HEX) = 1100 1101 (Binary). Reading from
left to right, this shows that coils 27, 26, 23, 22, and 20 are all on. The other Data Coil
Status bytes are decoded similarly. Due to the quantity of coil statuses requested, the
last data field, which is shown 1B (HEX) = 0001 1011 (Binary), contains the status of
only 5 coils (52 to 56) instead of 8 coils. The 3 left most bits are provided as zeros to fill
the 8-bit format.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 99 of 139

7.2.5 Read Input Status (Function Code 02)

Query

This function allows the user to obtain the ON/OFF status of discrete inputs (Modbus 1x
range) in the addressed Server PC Broadcast mode is not supported with this function
code. In addition to the Server address and function fields, the message requires that
the information field contain the initial input address to be read (Starting Address) and
the number of locations that will be interrogated to obtain status data.

The addressing allows up to 2000 inputs to be obtained at each request; however, the
specific Server device may have restrictions that lower the maximum quantity. The
inputs are numbered form zero; (input 10001 = zero, input 10002 = one, input 10003 =
two, and so on, for a 584).

The following table is a sample read input status request to read inputs 10197 to 10218
(22 coils) from Server number 11.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check
Field (2 bytes)

0B 02 00 C4 00 16 CRC

Response

An example response to Read Input Status is as shown in Figure C4. The data is
packed one bit for each input. The response includes the Server address, function code,
quantity of data characters, the data characters, and error checking. Data will be packed
with one bit for each input (1=ON, 0=OFF). The lower order bit of the first character
contains the addressed input, and the remainder follows. For input quantities that are not
even multiples of eight, the last characters will be filled in with zeros at high order end.
The quantity of data characters is always specified as a quantity of RTU characters, that
is, the number is the same whether RTU or ASCII is used.

Because the Server interface device is serviced at the end of a controller's scan, data
will reflect input status at the end of the scan. Some Servers will limit the quantity of
inputs provided each scan; thus, for large coil quantities, multiple PC transactions must
be made using coil status for sequential scans.

Node
Address

Func
Code

Byte
Count

Data Discrete Input
10197 to 10204

Data Discrete
Input 10205 to
10212

Data Discrete
Input 10213 to
10218

Error Check
Field (2 bytes)

0B 02 03 AC DB 35 CRC

The status of inputs 10197 to 10204 is shown as AC (HEX) = 10101 1100 (binary).
Reading left to right, this show that inputs 10204, 10202, and 10199 are all on. The other
input data bytes are decoded similar.

Due to the quantity of input statuses requested, the last data field which is shown as 35
HEX = 0011 0101 (binary) contains the status of only 6 inputs (10213 to 102180) instead
of 8 inputs. The two left-most bits are provided as zeros to fill the 8-bit format.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 100 of 139

7.2.6 Read Holding Registers (Function Code 03)

Query

This Function Code allows the user to obtain the holding registers (Modbus 4x range) in
the addressed Server. The registers can store the numerical values of associated timers
and counters which can be driven to external devices. The addressing allows up to 125
registers to obtain at each request; however, the specific Server device may have
restrictions that lower this maximum quantity. The registers are numbered form zero
(40001 = zero, 40002 = one, and so on). The broadcast mode is not allowed.

The example below reads registers 40108 through 40110 (3 registers) from Server ID
11.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check Field
(2 bytes)

0B 03 00 6B 00 03 CRC

Response

The addressed Server responds with its address and the function code, followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are two bytes
each, with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the Server interface device is normally serviced at the end of the controller's
scan, the data will reflect the register content at the end of the scan. Some Servers will
limit the quantity of register content provided each scan; thus for large register
quantities, multiple transmissions will be made using register content from sequential
scans.

In the example below, the registers 40108 to 40110 have the decimal contents 555, 0,
and 100 respectively.

Node
Address

Function
Code

Byte
Count

Hi
Data

Lo
Data

Hi
Data

Lo
Data

Hi
Data

Lo
Data

Error Check Field (2
bytes)

0B 03 06 02 2B 00 00 00 64 CRC

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 101 of 139

7.2.7 Read Input Registers (Function Code 04)

Query

This Function Code obtains the contents of the controller's input registers from the
Modbus 3x range. These locations receive their values from devices connected to the
I/O structure and can only be referenced, not altered from within the controller, The
addressing allows up to 125 registers to be obtained at each request; however, the
specific Server device may have restrictions that lower this maximum quantity. The
registers are numbered for zero (30001 = zero, 30002 = one, and so on). Broadcast
mode is not allowed.

The example below requests the contents of register 30009 in Server number 11.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check
Field (2 bytes)

0B 04 00 08 00 01 CRC

Response

The addressed Server responds with its address and the function code followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are 2 bytes each,
with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the Server interface is normally serviced at the end of the controller's scan, the
data will reflect the register content at the end of the scan. Each PC will limit the quantity
of register contents provided each scan; thus for large register quantities, multiple PC
scans will be required, and the data provided will be form sequential scans.

In the example below the register 30009 contains the decimal value 0.

Node Address Function Code Byte Count Data Input
Register High

Data Input
Register Low

Error Check Field
(2 bytes)

0B 04 02 00 00 CRC

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 102 of 139

7.2.8 Force Single Coil (Function Code 05)

Query

This Function Code forces a single coil (Modbus 0x range) either ON or OFF. Any coil
that exists within the controller can be forced to either state (ON or OFF). However,
because the controller is actively scanning, unless the coil is disabled, the controller can
also alter the state of the coil. Coils are numbered from zero (coil 0001 = zero, coil 0002
= one, and so on). The data value 65,280 (FF00 HEX) will set the coil ON and the value
zero will turn it OFF; all other values are illegal and will not affect that coil.

The use of Server address 00 (Broadcast Mode) will force all attached Servers to modify
the desired coil.

Note: Functions 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

The example below is a request to Server number 11 to turn ON coil 0173.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Number of
Points High

Number of
Points Low

Error Check
Field (2 bytes)

0B 05 00 AC FF 00 CRC

Response

The normal response to the Command Request is to re-transmit the message as
received after the coil state has been altered.

Node Address Function Code Data Coil Point High Data Coil Point Low Data On/
Off

Data Error Check
Field (2 bytes)

0B 05 00 AC FF 00 CRC

The forcing of a coil via Modbus function 5 will be accomplished regardless of whether
the addressed coil is disabled or not (In ProSoft products, the coil is only affected if the
necessary ladder logic is implemented).

Note: The Modbus protocol does not include standard functions for testing or changing the DISABLE state
of discrete inputs or outputs. Where applicable, this may be accomplished via device specific Program
commands (In ProSoft products, this is only accomplished through ladder logic programming).

Coils that are reprogrammed in the controller logic program are not automatically cleared
upon power up. Thus, if such a coil is set ON by function Code 5 and (even months
later), an output is connected to that coil, the output will be "hot".

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 103 of 139

7.2.9 Preset Single Register (Function Code 06)

Query

This Function Code allows the user to modify the contents of a Modbus 4x range in the
server. This will write to a single register only. Any holding register that exists within the
controller can have its contents changed by this message. However, because the
controller is actively scanning, it also can alter the content of any holding register at any
time. The values are provided in binary up to the maximum capacity of the controller
unused high order bits must be set to zero. When used with Server address zero
(Broadcast mode) all Server controllers will load the specified register with the contents
specified.

Note Functions 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

The example below is a request to write the value ‘3’ to register 40002 in server 11.

Node
Address

Function
Code

Data Start
Point High

Data Start
Point Low

Preset Data
Register
High

Preset Data
Register
Low

Error Check
Field (2 bytes)

0B 06 00 01 00 03 CRC

Response

The response to a preset single register request is to re-transmit the query message
after the register has been altered.

Node
Address

Function
Code

Data Register
High

Data Register
Low

Preset Data
Register High

Preset Data
Register Low

Error Check
Field (2 bytes)

0B 06 00 01 00 03 CRC

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 104 of 139

7.2.10 Diagnostics (Function Code 08)

This Function Code provides a series of tests for checking the communication system
between a Client device and a server, or for checking various internal error conditions
within a server.

The function uses a two-byte sub-function code field in the query to define the type of
test to be performed. The server echoes both the function code and sub-function code in
a normal response. Some of the diagnostics commands cause data to be returned from
the remote device in the data field of a normal response.

In general, issuing a diagnostic function to a remote device does not affect the running of
the user program in the remote device. Device memory bit and register data addresses
are not accessed by the diagnostics. However, certain functions can optionally reset
error counters in some remote devices.

A server device can, however, be forced into 'Listen Only Mode' in which it will monitor
the messages on the communications system but not respond to them. This can affect
the outcome of your application program if it depends upon any further exchange of data
with the remote device. Generally, the mode is forced to remove a malfunctioning
remote device from the communications system.

Sub-function Codes Supported

Only Sub-function 00 is supported by the MVI69L-MBTCP module.

00 Return Query Data

The data passed in the request data field is to be returned (looped back) in the
response. The entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)

00 00 Any Echo Request Data

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 105 of 139

Example and State Diagram

Here is an example of a request to remote device to Return Query Data. This uses a
sub-function code of zero (00 00 hex in the two-byte field). The data to be returned is
sent in the two-byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08

Sub-function Hi 00 Sub-function Hi 00

Sub-function Lo 00 Sub-function Lo 00

Data Hi A5 Data Hi A5

Data Lo 37 Data Lo 27

The data fields in responses to other kinds of queries could contain error counts or other
data requested by the sub-function code.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 106 of 139

7.2.11 Force Multiple Coils (Function Code 15)

Query

This Function Code forces each coil (Modbus 0x range) in a consecutive block of coils to
a desired ON or OFF state. Any coil that exists within the controller can be forced to
either state (ON or OFF). However, because the controller is actively scanning, unless
the coils are disabled, the controller can also alter the state of the coil. Coils are
numbered from zero (coil 00001 = zero, coil 00002 = one, and so on). The desired status
of each coil is packed in the data field, one bit for each coil (1= ON, 0= OFF). The use of
Server address 0 (Broadcast Mode) will force all attached Servers to modify the desired
coils.

Note: Functions 5, 6, 15, and 16 are the only messages (other than Loopback Diagnostic Test) that will be
recognized as valid for broadcast.

The following example forces 10 coils starting at address 20 (13 HEX). The two data
fields, CD =1100 and 00 = 0000 000, indicate that coils 27, 26, 23, 22, and 20 are to be
forced on.

Node
Address

Function
Code

Coil
Address
High

Coil
Address
Low

Number
of Coils
High

Number
of Coils
Low

Byte
Count

Force
Data
High 20
to 27

Force
Data
Low 28
to 29

Error
Check
Field (2
bytes)

0B 0F 00 13 00 0A 02 CD 01 CRC

Response

The normal response will be an echo of the Server address, function code, starting
address, and quantity of coils forced.

Node
Address

Function
Code

Coil
Address
High

Coil
Address
Low

Number of
Coils High

Number of
Coils Low

Error Check
Field (2 bytes)

0B 0F 00 13 00 0A CRC

The writing of coils via Modbus function 15 will be accomplished regardless of whether
the addressed coils are disabled or not.

Coils that are not programmed in the controller logic program are not automatically
cleared upon power up. Thus, if such a coil is set ON by function code 15 and (even
months later) an output is connected to that coil, the output will be hot.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 107 of 139

7.2.12 Preset Multiple Registers (Function Code 16)

Query

This Function Code allows the user to modify the contents of a Modbus 4x range in the
server. This will write up to 125 registers at time. Since the controller is actively
scanning, it also can alter the content of any holding register at any time.

Note: Function codes 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

The example below is a request to write 2 registers starting at register 40002 in server
11.

Node
Addrs

Func
Code

Data Start
Addrs
High

Data Start
Addrs
Low

Number
of
Points
High

Number
of
Points
Low

Byte
Count

Data
High

Data
Low

Data
High

Data
Low

Error
Check
Field (2
bytes)

0B 10 00 01 00 02 04 00 0A 01 02 CRC

Response

The normal response to a function 16 query is to echo the address, function code,
starting address and number of registers to be loaded.

Node
Address

Function
Code

Data Start
Address High

Data Start
Address Low

Number of
Points High

Number of
Points Low

Error Check Field (2
bytes)

0B 10 00 01 00 02 CRC

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 108 of 139

7.3 Floating-Point Support

The movement of floating point data between the MVI69L-MBTCP and other devices is
easily accomplished as long as the device supports IEEE 754 Floating Point format. This
IEEE format is a 32-bit single-precision floating-point format.

The logic necessary to move the floating-point data takes advantage of the COP
instruction in RSLogix 5000. The COP instruction is unique for data movement
commands in that it is an untyped function, meaning that no data conversion is done
when data is moved between controller tags with different data types (that is, it is an
image copy, not a value copy).

The COP instruction to move data from a floating-point controller tag into an integer
controller tag (something you would do to move floating-point values to the module) is
shown below.

This instruction will move one floating-point value in two 16-bit integer images to
MBTCP.DATA.WriteData[0], which is an integer tag. For multiple floating-point values
increase the Length field by a factor of 2 per floating-point value.

The COP instruction to move data from MBTCP.DATA.ReadData[0], which is an integer
tag, to a floating-point tag (something you would do to receive floating-point values from
the module) is shown below.

This instruction will move two 16-bit integer registers containing one floating point value
image into the floating-point tag. For multiple values increase the Length field.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 109 of 139

7.3.1 ENRON Floating-Point Support

Many manufacturers have implemented special support in their drivers for what is
commonly called the Enron version of the Modbus protocol. In this implementation,
addresses greater than 7000 are presumed to contain floating-point values. The
significance to this is that the count descriptor for a data transfer now denotes the
number of floating-point values to transfer, instead of the number of words.

7.3.2 Configuring Floating-Point Data Transfer

A question commonly asked by users is how to handle floatin-point data when the
module is used as a Modbus Client. This really depends on the server device and how it
addresses this application.

Just because your application is reading or writing floating-point data, does not mean
that you must configure the Float Flag, Float Start, and Float Offset parameters within
the module.

These parameters are only used to support what is typically referred to as Enron or
Daniel Modbus, where one register address must have 32 bits, or one floating-point
value. Below is an example:

Example #1

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47102 32 bit REAL Pressure Pump #1

47103 32 bit REAL TEMP Pump #2

47104 32 bit REAL Pressure Pump #2

With the module configured as a Client, you only need to enable these parameters to
support a write to this type of addressing (Modbus FC 6 or 16).

If the server device uses addressing as shown in Example #2, then you do not need to
do anything with the Float Flag or Float Start parameters, as this addressing scheme
uses two Modbus addresses to represent each floating=point value:

Example #2

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47103 32 bit REAL Pressure Pump #1

47105 32 bit REAL TEMP Pump #2

47107 32 bit REAL Pressure Pump #2

Because each 32-bit REAL value is represented by two Modbus addresses (example:
47101 and 47102 represent TEMP Pump #1), then you do not need to set the Float Flag
or Float Start for the module for Modbus FC 6 or 16 commands being written to the
server.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 110 of 139

The next few pages show three specific examples.

Example #1: Client is issuing Modbus command with FC 16 (with Float Flag: Yes) to
transfer Float data to Server.

(Float specific module parameters)

Float Flag: "Y" tells the Client to consider the data values that need to be sent to the
Server as floating-point data where each data value is composed of 2 words (4 bytes or
32 bits).

Float Start: Tells the Client that if this address number is <= the address number in
"Addr in Dev" parameter to double the byte count quantity to be included in the
Command FC6 or FC16 to be issued to the Server. Otherwise the Client will ignore the
"Float Flag: Y" and treat data as composed of 1 word, 2 bytes.

(Modbus Command parameters)

DB Addr - Tells the Client where in its database is the beginning of data to obtain and
write out to the Server device.

Reg Count - Tells the Client how many data points to send to the Server. Two counts
will mean two floating points with Float Flag: Y and the "Addr in Dev" => the "Float Start"
Parameter.

Swap Code - Tells the Client how to orient the Byte and Word structure of the data
value. This is device dependent. Check Command Entry formats Section.

Func Code - Tells the Client to write the float values to the Server. FC16.

Addr in Dev - Tells the Client where in the Server's database to locate the data.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 111 of 139

In the above example, the Client's Modbus command to transmit inside the Modbus
packet will be as follows:

 Server
address

Function
Code

Address in
Device

Reg count Byte Count Data

DEC 01 16 7100 2 8 85.37 22.86

HEX 01 10 1B BC 00 02 08 BD 71 42 AA E1 48 41 B6

In this example, the Client's Modbus packet contains the data byte and data word counts
that have been doubled from the amount specified by Reg Count due to the Float flag
set to Y. Some Servers look for the byte count in the data packet to know the length of
the data to read from the wire. Other servers know at which byte the data begins and
read from the wire the remaining bytes in the packet as the data the Client is sending.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 112 of 139

Specific Example #2: Client is issuing Modbus command with FC 16 (with Float Flag:
No) to transfer Float data.

Float Flag: "N" tells the Client to ignore the floating values and treat each register data
as a data point composed of 1 word, 2 bytes or 16 bits.

Float Start: Ignored.

DB Addr - same as when Float Flag: Y.

Reg Count - Tells the Client how many data points to send to the Server.

Swap Code - same as when Float Flag: Y.

Func Code - same as when Float Flag: Y.

Addr in Dev - same as when Float Flag: Y as long as the Server's Float Flag = Y.

In the above example, the Client's Modbus command to transmit inside the Modbus
packet will be as follows.

 Server
address

Function
Code

Address in
Device

Reg
Count

Byte
Count

Data

DEC 01 16 7100 2 4 85.37

HEX 01 10 1B BC 00 02 04 BD 71 42 AA

In this example, the Client's Modbus packet contains the data byte and data word counts
that have NOT been doubled from the amount specified by Reg Count due to the Float
Flag set to N. The Server looks for the byte count in the data packet to know the length
of the data to read from the wire. Because of insufficient byte count, some servers will
read only half the data from the Client's transmission. Other servers will read all 8 bytes
in this example because they will know where in the packet the data starts and ignore
the byte count parameter inside the Modbus packet.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 113 of 139

Specific Example #3: Client is issuing Modbus command with FC 3 to transfer Float data
from Server.

Float Flag: Not applicable with Modbus Function Code 3.

Float Start: Not applicable with Modbus Function Code 3.

DB Addr - Tells the Client where in its data memory to store the data obtained from the
Server.

Reg Count - Tells the Client how many registers to request from the Server.

Swap Code - Same as above.

Func Code - Tells the Client to read the register values from the Server. FC3.

Addr in Dev - Tells the Client where in the Server's database to obtain the data.

The Client's Modbus command to transmit inside the Modbus packet will be as follows:

 Server address Function Code Address in Device Reg count

DEC 01 3 6100 2

HEX 01 03 17 D4 00 02

The (Enron/Daniel supporting) Server's Modbus command to transmit inside the Modbus
packet will be as follows:

 Server address Function Code Byte Count Data

DEC 01 3 8 32.75 275.69

HEX 01 03 08 00 00 42 03 D8 52 43 89

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 114 of 139

The (Non-Enron/Daniel supporting) Server's Modbus command that will be transmitted
inside the Modbus packet will be as follows:

 Server address Function Code Byte Count Data

DEC 01 3 4 32.75

HEX 01 03 04 00 00 42 03

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 115 of 139

7.4 Function Blocks

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69L-MBTCP module's
program. Each block transferred from the module to the processor or from the processor
to the module contains a block identification code that describes the content of the block.

 Block ID Range Description

-1000 to -1166 Get input image data for initialization

-1 to -999 Dummy block

0 Read or write data for small data sets

1 to 167 Read or write data blocks

2000 to 2019 Event Command blocks

3000 to 3019 Client status request/response blocks

4000 to 4019 Event Sequence Command blocks

4100 to 4119 Event Sequence Command Error Status blocks

4200 Get queue and event sequence block counts

5001 to 5016 Command Control blocks

8000 to 8019 Add Event with data for a client

8100 Get Event with data status

9250 Get general module status data

9500 Set driver and command active bits

9501 Get driver and command active bits

9956 Pass-through formatted block for functions 6 and 16 with word data

9957 Pass-through formatted block for functions 6 and 16 with float data

9958 Pass-through formatted block for function 5

9959 Pass-through formatted block for function 15

9961 Pass-through formatted block for function 23

9970 Pass-through block for function 99

9972 Set module time using received time

9973 Pass module time to processor

9997 Reset status block

9998 Warm-boot control block

9999 Cold-boot control block

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 116 of 139

7.4.1 Event Command Blocks

Blocks 2000 to 2019: Event Command

Event Command blocks send Modbus commands directly from the ladder logic to the
specified MBTCP Client x. The Event Command will be added to the high-priority queue
and will interrupt normal polling so this special command can be sent as soon as
possible.

Note: Overuse of Event Commands may substantially slow or totally disrupt normal polling. Use Event
Commands sparingly. Event Commands are meant to be used as one-shot commands triggered by special
circumstances or uncommon events.

Blocks 2000 to 2019: Request from Processor to Module

Offset Description

0 Block ID 2000 to 2019 indicates this block contains a command to execute by the
Client Driver. The last two digits indicate which Client to utilize.

Example: ‘2008’ will utilize Client 8

1 to 4 IP address for the server the message is intended. Each digit (0 to 255) of the IP
address is placed in one of the four registers

5 TCP service port the message will be use

6 Modbus node address to use with the message

7 Internal Modbus address in the module to be used

8 Count parameter that determines the number of digital points or registers to
associate with the command

9 Swap type for integer data only.

10 Modbus function code

11 Modbus address in the slave device to be associated with the command

12 to 239 Spare

Blocks 2000 to 2019: Response from Module to Processor

Offset Description

0 Block ID 2000 to 2019 requested by the processor

1 The next read request block identification code

2 Result of the event request. If a value of ‘1’ is present, the command was placed in
the command queue. If a value of ‘0’ is present, no room was found in the command
queue. If a value of ‘-1’ is present, the client is not enabled and active.

3 Number of commands in queue

4 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 117 of 139

7.4.2 Client Status Request/Response Blocks

Block 3000 to 3019: Client Status Request/Response
These blocks request the status of a specific MVI69L-MBTCP Client.

Block 3000 or 3019: Request from Processor to Module

Offset Description

0 Block ID 3000 to 3019 identification code indicates this block will request the status
from a specific MVI69L-MBTCP Client. The last two digits indicate which Client to
utilize.

Example: ‘3008’ will utilize Client 8

1 to 239 Spare

Block 3000 to 3019: Response from Module to Processor

Offset Description

0 Block ID 3000 to 3019 requested by the processor

1 Write Block ID

2 to 11 Client status data

12 to 27 Command error list data for Client

28 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 118 of 139

7.4.3 Event Sequence Request Blocks

Block 4000 to 4019: Event Sequence Request
These blocks send Modbus TCP/IP commands directly from controller tags by ladder
logic to the Client command priority queue on the module. Event Commands are not
placed in the module's internal database and are not part of the MNET Client x
Command List in PCB.

Block 4000 to 4019: Request from Processor to Module

Offset Description

0 Block ID 4000 to 4019 indicates this block will trigger the event sequence of
MVI69L-MBTCP client. The last two digits indicate which Client to utilize.

Example: ‘4008’ will utilize Client 8

1 to 4 IP address for the server the message is intended. Each digit (0 to 255) of the IP
address is placed in one of the four registers

5 TCP service port the message will be use

6 Modbus node address to use with the message

7 Internal Modbus address in the module to be used

8 Count parameter that determines the number of digital points or registers to
associate with the command

9 Swap type for integer data only.

10 Modbus function code

11 Modbus address in the slave device to be associated with the command

12 Sequence Number

13 to 239 Spare

Block 4000 to 4019: Response from Module to Processor

Offset Description

0 Block ID 4000 to 4019 requested by the processor

1 Write Block ID

2 0=Fail, 1=Success, -1=Client is not enabled and active

3 Number of commands in queue

4 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 119 of 139

7.4.4 Event Sequence Command Error Status Blocks

Block 4100 to 4119: Event Sequence Command Error Status Request
This block displays the result of each command sent to the Client. The request includes
the Client identification and the command sequence number. The response is the event
count and error code for each event. A value of ‘0’ in the error code means there was no
error detected.

Block 4100 to 4119: Request from Processor to Module

Offset Description

0 Block ID 4100 to 4119 indicates this block will trigger the event sequence
command error status request of a specific MVI69L-MBTCP client. The last two
digits indicate which Client to utilize.

Example: ‘4108’ will utilize Client 8

1 to 239 Spare

Block 4100 to 4119: Response from Module to Processor

Offset Description

0 Block ID 4100 to 4119 requested by the processor

1 Write Block ID

2 Number of Event Sequence Messages in block (0 to 15)

3 Sequence Number

4 Return Error Code

5 Sequence Number

6 Return Error Code

7 Sequence Number

8 Return Error Code

… …

… …

31 Sequence Number

32 Return Error Code

33 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 120 of 139

7.4.5 Get Queue and Event Sequence Block Counts Block

Block 4200: Get Queue and Event Sequence Block Counts Request
This block requests the command queue count and the number of pending event
sequence commands for all module Clients.

Block 4200: Request from Processor to Module

Offset Description

0 Block ID 4200

1 to 239 Spare

Block 4200: Response from Module to Processor

Offset Description

0 Block ID 4200

1 Write Block ID

2 Client 0 command queue count (MSB Most Significant Byte) and event sequence
messages waiting (LSB Least Significant Bit)

3 Client 1 command queue count (MSB Most Significant Byte) and event sequence
messages waiting (LSB Least Significant Bit)

4 Client 2 command queue count (MSB Most Significant Byte) and event sequence
messages waiting (LSB Least Significant Bit)

… …

11 Client 9 command queue count (MSB Most Significant Byte) and event sequence
messages waiting (LSB Least Significant Bit)

10 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 121 of 139

7.4.6 Command Control Blocks

Block 5001 to 5016: Command Control
Command Control blocks place commands into the module’s command priority queue.
Unlike Event Command blocks, which contain all the values needed for one command,
Command Control is used with commands already defined in the MNET Client x
Command List in PCB.

Block 5001 to 5016: Request from Processor to Module

Offset Description

0 Command queue block identification code of 5001 to 5016

1 Client index (0 to 9) to be used

2 Command Index in the command list for the first command to be entered into the
command queue

3 to 17 Command indexes of the next commands to be placed in the command queue

18 to 239 Spare

Block 5001 to 5016: Response from Module to Processor

Offset Description

0 Command queue block identification code of 5001 to 5016

1 The next write block ID

2 Client index (0 to 9) to be used

3 Number of commands in the block placed in the command queue. If a value of -2
is returned, then the client index is not valid. If a value of -1 is returned, the client
is not enabled and active.

4 Number of commands in queue

5 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 122 of 139

7.4.7 Add Event with Data for Client Blocks

Block 8000: Add Event with Data for Client
The 8000-series blocks are similar to the 2000-series Event Command blocks. The
8000-series blocks source the command data from the processor, instead of from the
module’s database. These blocks use ‘write’ Modbus Function Codes (5, 6, 15, 16)
only.

Block 8000: Request from Processor to Module

Offset Description

0 Block ID 8000 indicates this block will add an event with data of a specific
MVI69L-MBTCP client. The last two digits indicate which Client to utilize.

Example: ‘8008’ will utilize Client 8

1 to 4 IP address for the server the message is intended. Each digit (0 to 255) of the IP
address is placed in one of the four registers

5 TCP service port the message will be use

6 Modbus node address to use with the message

7 Modbus Function Code: 5, 6, 15 or 16 only

8 Modbus address in the slave device to be associated with the command

9 Count value for operation- bit count for function 15 (1 to 800 points) and word
count for function 16 (1 to 50 words or 1 to 25 float values). For functions 5 and
6, the count is assumed to be 1.

10 to 59 Data values to be used by command

60 to 239 Spare

Block 8000: Response from Module to Processor

Offset Description

0 Block ID 8000 for event command with data request

1 The next read request block identification code

2 Error Code for request:

 0=No error

-1=Client is not enabled

-3=Client is not active

-4=Client busy with previous event command

-5=Invalid Modbus command

-6=Invalid point count for command

3 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 123 of 139

7.4.8 Get Event with Data Status Block

Block 8100: Get Event with Data Status

This block requests status data for Event with Data Commands.

Block 8100: Request from Processor to Module

Offset Description

0 Block ID 8100 status data request for Event with Data Commands.

1 to 239 Spare

Block 8100: Response from Module to Processor

Offset Description

0 Block ID 8100 status data for Event with Data Commands

1 The next read request block identification code

2 Number of client records contained in block (0-19)

3 Client Index (0 to 9)

4 Error code for last command executed for Client

5 Client Index (0 to 9)

6 Error code for last command executed for Client

7 to 42 Data for other clients being reported

43 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 124 of 139

7.4.9 Get General Module Status Data Block

Block 9250: Get General Module Status Data

This block is used to request general module status

Block 9250: Request from Processor to Module

Offset Description

0 Block ID 9250 to request the general module status response block

Block 9250: Response from Module to Processor

Offset Description

0 Block ID 9250 requested by processor

1 The next read request block identification code

2 Program Scan Count: This value is increased each time a complete program cycle
occurs in the module

3 to 4 Product Code: These two registers contain the product code of "MB6E" for the
MVI69L-MBTCP module

5 to 6 Product Version: These two registers contain the product version for the current
running software

7 to 8 Operating System: These two registers contain the month and year values for the
program’s operating system

9 to 10 Run Number: These two registers contain the run number value for the currently
running software.

11 Read Block Count: Total number of read blocks transferred from the module to the
processor

12 Write Block Count: Total number of write blocks transferred from the processor to
the module

13 Parse Block Count: Total number of blocks successfully parsed that were received
from the processor

14 Event Command Block Count: Total number of Event Command blocks received
from the processor

15 Command Block Count: Total number of command blocks received from the
processor

16 Error Block Count: Total number of block errors recognized by the module.

17 Client 0 command execution word. Each bit in this word is used to enable/disable
the commands for client 0. If the bit is set, the command will be executed. If the
bit is clear, the command will be disabled

18 to 36 Client 1 to Client 9 command execution words

37 to 38 Event Sequence Ready. Bit mapped -1 bit for each Client 0 to 9

Bit=0, No event sequence status data ready

Bit=1, Event seq. status data ready

39 Encapsulated Modbus TCP/IP request count: This counter increments each time
an Encapsulated Modbus TCP/IP (Service Port 2000) request is received from a
remote Modbus TCP/IP client

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 125 of 139

Offset Description

40 Encapsulated Modbus TCP/IP response count: This counter increments each time
an Encapsulated Modbus TCP/IP (Service Port 2000) response is sent back to a
remote Modbus TCP/IP client command

41 Encapsulated Modbus TCP/IP error sent: This counter increments each time an
error is sent from the server to the remote Modbus TCP/IP client

42 Encapsulated Modbus TCP/IP error received: This counter increments each time
an error is received from a remote Modbus TCP/IP client

43 Modbus MBAP request count: This counter increments each time an MBAP
(Service Port 502) request is received from a remote Modbus TCP/IP client

44 Modbus MBAP response count: This counter increases each time an MBAP
(Service Port 502) response is sent back to a remote Modbus TCP/IP client
command

45 Modbus MBAP error sent: This counter increments each time an error is sent from
the server to the remote MBAP Modbus TCP/IP client

46 Modbus MBAP error received: This counter increments each time an error is
received from a remote MBAP Modbus TCP/IP client

47 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 126 of 139

7.4.10 Set Driver and Command Active Bits Block

Block 9500: Set Driver and command active bits

This block enables and disables the Modbus TCP/IP Clients and Servers of the module.

Block 9500: Request from Processor to Module

Offset Description

0 Block ID 9500 to set server and client enable/disable state

1 Server active state

0=Disabled, 1=Enabled

2 Client 0 to15 bit map for active status of clients

3 Spare

4 to 13 Client 0 to Client 9 command active bits. One word for each client with each bit
used to turn on and off the commands for the client.

0=Disabled, 1=Enabled

24 to 239 Spare

Block 9500: Response from Module to Processor

Offset Description

0 Block ID 9500 requested by processor

1 The next write block ID

2 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 127 of 139

7.4.11 Get Driver and Command Active Bits Block

Block 9501: Get driver and command active bits

This block requests the active state of MBTCP Driver and Client commands.

Block 9501: Request from Processor to Module

Offset Description

0 Block ID 9501 to get MBTCP Driver and command active status

1 to 239 Spare

Block 9501: Response from Module to Processor

Offset Description

0 Block ID 9501 requests the active state of MBTCP Driver and Client commands

1 The next write block ID

2 Server active state

0=disabled, 1=enabled

3 Client 0 to 15 bit map for active status of clients

4 Spare

5 to 14 Client 0 to Client 9 command active bits. One word for each client with each bit
used to turn on and off the commands for the client.

0=Disabled, 1=Enabled

25 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 128 of 139

7.4.12 Pass-through Formatted Block for Functions 6 and 16 with Word
Data Block

Block 9956: Pass-through Formatted Block for Functions 6 and 16 with Word Data Block
If the server port on the module is configured for formatted pass-through mode, the
module will send input image blocks with identification codes of 9956, 9957, 9958 or
9959 to the processor for each write command received. Any incoming Modbus Function
5, 6, 15 or 16 command will be passed from the port to the processor using a block
identification number that identifies the Function Code received in the incoming
command.

The MVI69L-MBTCP Add-On Instruction will handle the receipt of all Modbus write
functions and to respond as expected to commands issued by the remote Modbus Client
device.

Block 9956: Request from Module to Processor

Offset Description

0 Block ID 9956

1 Block ID 9956

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the pass-through control block with an output image write block
with the following format.

This informs the module that the command has been processed and can be cleared
from the pass-through queue.

Block 9956: Response from Processor to Module

Offset Description

0 Block ID 9956

1 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 129 of 139

7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Float Data
Block

Block 9957: Pass-through Formatted Block for Functions 6 and 16 with Float Data Block

Block 9957: Request from Module to Processor

Offset Description

0 Block ID 9957

1 Block ID 9957

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the Pass-through block with a write block with the following format.

Block 9957: Response from Processor to Module

Offset Description

0 Block ID 9957

1 to 239 Spare

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 130 of 139

7.4.14 Pass-through Formatted Block for Function 5

Block 9958: Pass-through Formatted Block for Function 5

Block 9958: Request from Module to Processor

Offset Description

0 Block ID 9958

1 Block ID: 9958

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the pass-through control block with an output image write block
with the following format.

Block 9958: Response from Processor to Module

Offset Description

0 Block ID 9958

1 to 239 Spare

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 131 of 139

7.4.15 Pass-through Formatted Block for Function 15

Block 9959: Pass-through Formatted Block for Function 15

When the module receives a function code 15 in pass-through mode, the module will
write the data using block ID 9959 for multiple-bit data. First the bit mask clears the bits
to be updated. This is accomplished in RSLogix 5000 by ANDing the inverted mask with
the existing data.

Next, the new data ANDed with the mask is ORed with the existing data. This protects
the other bits in the INT registers from being affected.

Block 9959: Request from Module to Processor

Offset Description

0 Block ID 9959

1 Block ID 9959

2 Length in words

3 Data address

4 to 28 Modbus Data

29 to 53 Bit mask to use with the data set. Each bit to be considered with the data set will
have a value of 1 in the mask. Bits to ignore in the data set will have a value of 0
in the mask.

54 to n Spare

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the pass-through control block with a write block with the following
format.

Block 9959: Response from Processor to Module

Offset Description

0 Block ID 9959

1 to n Spare

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 132 of 139

7.4.16 Pass-through Formatted Block for Function 23

Block 9961: Pass-through Formatted Block for Function 23

Block 9961: Request from Module to Processor

Offset Description

0 Block ID 9961

1 Block ID 9961

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the pass-through control block with an output image write block
with the following format.

Block 9961: Response from Processor to Module

Offset Description

0 Block ID 9961

1 to 239 Spare

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 133 of 139

7.4.17 Pass-through Block for Function 99

Block 9970: Pass-through Block for Function 99

Block 9970: Request from Module to Processor

Offset Description

0 Block ID 9970

1 Block ID 9970

2 1

3 0

4 to 239 Spare

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Client device. The processor
must then respond to the pass-through control block with an output image write block
with the following format.

Block 9970: Response from Processor to Module

Offset Description

0 Block ID 9970

1 to 239 Spare

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 134 of 139

7.4.18 Set Module Time Using Received Time Block

Block 9972: Set Module Time Using Received Time Block

This block will use the time information of the processor to set the module time.

Block 9972: Request from Processor to Module

Offset Description

0 Block ID 9972

1 Year (0-9999)

2 Month (1-12)

3 Day (1-31)

4 Hour (0-23)

5 Minutes (0-59)

6 Seconds (0-59)

7 Milliseconds (0-999)

8 to 239 Spare

Block 9972: Response from Module to Processor

Offset Description

0 Block ID 9972

1 Write Block ID

2 Return code 0=OK, -1=error

3 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 135 of 139

7.4.19 Pass Module Time to Processor Block

Block 9973: Pass Module Time to Processor Block

This block will use the time information of the module to set the processor time.

Block 9973: Request from Processor to Module

Offset Description

0 Block ID 9973

1 to 239 Spare

Block 9973: Response from Module to Processor

Offset Description

0 Block ID 9973

1 Write Block ID

2 Year (0-9999)

3 Month (1-12)

4 Day (1-31)

5 Hour (0-23)

6 Minutes (0-59)

7 Seconds (0-59)

8 Milliseconds

9 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 136 of 139

7.4.20 Reset Status Block

Block 9997: Reset Status Block

This block will reset the module and client/server status.

Block 9997: Request from Processor to Module

Offset Description

0 Block ID 9997

1 Reset Module status (0=no, else yes)

2 Reset Port 1 status (0=no, else yes)

3 to 239 Spare

Block 9997: Response from Module to Processor

Offset Description

0 Block ID 9997

1 Write Block ID

2 to 239 Spare

7.4.21 Warm-boot Control Block

Block 9998: Warm-boot Control Block

If the CompactLogix sends a block number 9998, the module will perform a warm-boot
operation. The module will reconfigure the communication ports and reset the error and
status counters.

Block 9998: Request from Processor to Module

Offset Description

0 Block ID 9998

1 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 137 of 139

7.4.22 Cold-boot Control Block

Block 9999: Cold-boot Control Block

If the CompactLogix processor sends a block number 9999, the firmware will perform a
cold-boot operation. The firmware will reload the configuration file and reset all
MVI69L-MBTCP memory, error and status data.

Block 9999: Request from Processor to Module

Offset Description

0 Block ID 9999

1 to 239 Spare

MVI69L-MBTCP ♦ CompactLogix™ Platform Reference
Communication Module User Manual

ProSoft Technology, Inc. Page 138 of 139

7.5 Ethernet Cable Connections

7.5.1 Ethernet Cable Specifications

The recommended cable is Category 5 or better. A Category 5 cable has four twisted
pairs of wires, which are color-coded and cannot be swapped. The module uses only
two of the four pairs.

The Ethernet port on the module is Auto-Sensing. A standard Ethernet straight-through
cable or a crossover cable can be used when connecting the module to an Ethernet hub,
a 10/100 Base-T Ethernet switch, or directly to a PC. The module will detect the cable
type and use the appropriate pins to send and receive Ethernet signals.

Some hubs have one input that can accept either a straight-through or crossover cable,
depending on a switch position. In this case, ensure the switch position and cable type
agree.

7.5.2 Ethernet Performance

Ethernet performance can affect the operation of the MVI69L-MBTCP application ports
in the following ways:

• Accessing the web interface (refreshing the page, downloading files, and so on) may
affect performance

• High Ethernet traffic may impact performance (consider using managed switches to
reduce traffic coming to module port).

MVI69L-MBTCP ♦ CompactLogix™ Platform Support, Service & Warranty
Communication Module User Manual

ProSoft Technology, Inc. Page 139 of 139

8 Support, Service & Warranty

8.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective
support possible. Before calling, please gather the following information to assist in
expediting this process:

1 Product Version Number

2 System architecture

3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any

2 Module operation and any unusual behavior

3 Configuration/Debug status information

4 LED patterns

5 Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100

ps.prosofttechnology@belden.com

Languages spoken: English, Spanish

REGIONAL TECH SUPPORT

ps.support@belden.com

Phone: +33.(0)5.34.36.87.20

ps.europe@belden.com

Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT

ps.support.emea@belden.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814

ps.latinam@belden.com

Languages spoken: English, Spanish,

Portuguese

REGIONAL TECH SUPPORT

ps.support.la@belden.com

Phone: +60.3.2247.1898

ps.asiapc@belden.com

Languages spoken: Bahasa, Chinese, English,

Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT

ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please see:
www.prosoft-technology.com/About-Us/Contact-Us

8.2 Warranty Information

For details regarding ProSoft Technology’s legal terms and conditions, please see:

www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:

www.prosoft-technology.com/Services-Support/Return-Material-Instructions

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	Your Feedback Please
	How to Contact Us
	Agency Approvals & Certifications

	1 Start Here
	1.1 System Requirements
	1.2 Package Contents
	1.3 Setup Jumper
	1.4 Installing the Module in the Rack

	2 Add-On Instruction
	2.1 Installing ProSoft Configuration Builder
	2.2 Generating the AOI (.L5X) File in ProSoft Configuration Builder
	2.2.1 Creating a New Project in PCB
	To add the MVI69L-MBTCP module to the project

	2.2.2 Exporting the .L5X File from PCB

	2.3 Creating a New RSLogix 5000 Project
	2.4 Creating the Module in an RSLogix 5000 Project
	2.4.1 Installing an Add-On Profile
	2.4.2 Creating a Module in the Project Using an Add-On Profile
	2.4.3 Creating a Module in the Project Using a Generic 1769 Module Profile

	2.5 Importing the Add-On Instruction
	2.6 Adding Multiple Modules in the Rack (Optional)
	2.6.1 Adding a New Module in PCB
	2.6.2 Adding a new module in RSLogix 5000

	3 MVI69L-MBTCP Configuration
	3.1 Basic PCB Functions
	3.1.1 Creating a New PCB Project and Exporting an .L5X File
	3.1.2 Renaming PCB Objects
	3.1.3 Editing Configuration Parameters
	3.1.4 Printing a Configuration File

	3.2 Module Configuration Parameters
	3.2.1 Module
	3.2.2 MBTCP Servers
	3.2.3 MBTCP Client x
	3.2.4 MBTCP Client x Commands
	3.2.5 Ethernet 1
	3.2.6 Static ARP Table

	3.3 Downloading the Configuration File to the Processor
	3.4 Uploading the Configuration File from the Processor

	4 Backplane Data Exchange
	4.1 Backplane Data Transfer
	4.2 Normal Data Transfer
	4.2.1 Write Block: Request from the Processor to the Module
	4.2.2 Read Block: Response from the Module to the Processor
	4.2.3 Read and Write Block Transfer Sequences

	4.3 Data Flow Between the Module and Processor
	4.3.1 Server Driver Overview
	4.3.2 Client Driver Overview
	Client Command List
	Command Error Codes

	5 Using Controller Tags
	5.1 Controller Tags
	5.1.1 MVI69L-MBTCP Controller Tags

	5.2 User-Defined Data Types (UDTs)
	5.2.1 MVI69L-MBTCP User-Defined Data Types

	5.3 Controller Tag Overview
	5.3.1 MBTCP.CONFIG
	5.3.2 MBTCP.DATA
	5.3.3 MBTCP.CONTROL
	5.3.4 MBTCP.STATUS
	5.3.5 MBTCP.UTIL

	6 Diagnostics and Troubleshooting
	6.1 Ethernet LED Indicators
	6.2 LED Status Indicators
	6.2.1 Clearing a Fault Condition
	6.2.2 Troubleshooting the LEDs
	Processor Errors
	Module Errors

	6.3 Connecting the PC to the Module's Ethernet Port
	6.3.1 Setting Up a Temporary IP Address

	6.4 Connecting to the Diagnostics Menu in ProSoft Configuration Builder
	6.4.1 Diagnostics Menu
	6.4.2 Monitoring General Information
	6.4.3 Monitoring Network Configuration Information
	6.4.4 Monitoring Backplane Status Information
	6.4.5 Modbus Server Driver Information
	6.4.6 Monitoring Data Values in the Module’s Database
	6.4.7 Modbus Client Driver Information

	6.5 Communication Error Codes
	6.5.1 Standard Modbus Protocol Exception Code Errors
	6.5.2 Module Communication Error Codes
	6.5.3 Command List Entry Errors
	6.5.4 MBTCP Client-Specific Errors

	6.6 Connecting to the Module’s Webpage

	7 Reference
	7.1 Product Specifications
	7.1.1 General Specifications - Modbus Client/Server
	7.1.2 Hardware Specifications

	7.2 About the Modbus Protocol
	7.2.1 Modbus Client
	7.2.2 Modbus Server
	7.2.3 Commands Supported by the Module
	7.2.4 Read Coil Status (Function Code 01)
	Query
	Response

	7.2.5 Read Input Status (Function Code 02)
	Query
	Response

	7.2.6 Read Holding Registers (Function Code 03)
	Query
	Response

	7.2.7 Read Input Registers (Function Code 04)
	Query
	Response

	7.2.8 Force Single Coil (Function Code 05)
	Query
	Response

	7.2.9 Preset Single Register (Function Code 06)
	Query
	Response

	7.2.10 Diagnostics (Function Code 08)
	Sub-function Codes Supported
	00 Return Query Data
	Example and State Diagram

	7.2.11 Force Multiple Coils (Function Code 15)
	Query
	Response

	7.2.12 Preset Multiple Registers (Function Code 16)
	Query
	Response

	7.3 Floating-Point Support
	7.3.1 ENRON Floating-Point Support
	7.3.2 Configuring Floating-Point Data Transfer
	Example #1
	Example #2
	Example #1: Client is issuing Modbus command with FC 16 (with Float Flag: Yes) to transfer Float data to Server.
	(Float specific module parameters)
	(Modbus Command parameters)
	Specific Example #2: Client is issuing Modbus command with FC 16 (with Float Flag: No) to transfer Float data.
	Specific Example #3: Client is issuing Modbus command with FC 3 to transfer Float data from Server.

	7.4 Function Blocks
	7.4.1 Event Command Blocks
	7.4.2 Client Status Request/Response Blocks
	7.4.3 Event Sequence Request Blocks
	7.4.4 Event Sequence Command Error Status Blocks
	7.4.5 Get Queue and Event Sequence Block Counts Block
	7.4.6 Command Control Blocks
	7.4.7 Add Event with Data for Client Blocks
	7.4.8 Get Event with Data Status Block
	7.4.9 Get General Module Status Data Block
	7.4.10 Set Driver and Command Active Bits Block
	7.4.11 Get Driver and Command Active Bits Block
	7.4.12 Pass-through Formatted Block for Functions 6 and 16 with Word Data Block
	7.4.13 Pass-through Formatted Block for Functions 6 and 16 with Float Data Block
	7.4.14 Pass-through Formatted Block for Function 5
	7.4.15 Pass-through Formatted Block for Function 15
	7.4.16 Pass-through Formatted Block for Function 23
	7.4.17 Pass-through Block for Function 99
	7.4.18 Set Module Time Using Received Time Block
	7.4.19 Pass Module Time to Processor Block
	7.4.20 Reset Status Block
	7.4.21 Warm-boot Control Block
	7.4.22 Cold-boot Control Block

	7.5 Ethernet Cable Connections
	7.5.1 Ethernet Cable Specifications
	7.5.2 Ethernet Performance

	8 Support, Service & Warranty
	8.1 Contacting Technical Support
	8.2 Warranty Information

