

ADMNET-MCM
ProLinx Standalone

'C' Programmable Modbus
Communication Module with Ethernet

 February 20, 2013

DEVELOPER'S GUIDE

Important Installation Instructions

Power, Input and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NONHAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

All ProLinx® Products

WARNING – EXPLOSION HAZARD – DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT – RISQUE D'EXPLOSION – AVANT DE DÉCONNECTER L'EQUIPMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

Markings

UL/cUL ISA 12.12.01 Class I, Div 2 Groups A, B, C, D

cUL C22.2 No. 213-M1987

 243333 183151

CL I Div 2 GPs A, B, C, D

Temp Code T5

II 3 G

Ex nA nL IIC T5 X

0° C <= Ta <= 60° C

II – Equipment intended for above ground use (not for use in mines).

3 – Category 3 equipment, investigated for normal operation only.

G – Equipment protected against explosive gasses.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about the product, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

ADMNET-MCM Developer's Guide

February 20, 2013

ProSoft Technology
®
, ProLinx

®
, inRAx

®
, ProTalk

®
, and RadioLinx

®
 are Registered Trademarks of ProSoft

Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

Latin America: +1.281.298.9109

http://www.prosoft-technology.com/

Contents ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 5 of 98
February 20, 2013

Contents

Important Installation Instructions ... 2
Your Feedback Please .. 3
Content Disclaimer .. 3

1 Introduction 7

1.1 Operating System .. 7

2 Preparing the ProLinx-ADMNET Module 9

2.1 Package Contents ... 9
2.2 Jumper Locations and Settings ... 9
2.3 Connections .. 9

3 Setting Up Your Development Environment 15

3.1 Setting Up Your Compiler.. 15
3.2 Downloading Files to the Module .. 32

4 Programming the Module 35

4.1 Debugging Strategies .. 35
4.2 RS-485 Programming Note ... 35

5 Understanding the ProLinx-ADMNET API 37

5.1 API Libraries .. 37
5.2 Development Tools ... 38
5.3 Theory of Operation .. 39
5.4 ADM API Files ... 39

6 Application Development Function Library - ADMNET API 41

6.1 ADMNET API Functions .. 41
6.2 ADMNET API Initialize Functions .. 42
6.3 ADMNET API Release Socket Functions ... 44
6.4 ADMNET API Send Socket Functions .. 46
6.5 ADMNET API Receive Socket Functions .. 48
6.6 ADMNET API Miscellaneous Functions .. 50

7 WATTCP API Functions 53

7.1 WATTCP API Functions .. 53
7.2 ADMNET API Initialize Functions .. 55
7.3 ADMNET API System Functionality .. 56
7.4 ADMNET API Release Socket Functions ... 71
7.5 ADMNET API Send Socket Functions .. 74

ADMNET-MCM ♦ ProLinx Standalone Contents
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 6 of 98 ProSoft Technology, Inc.
 February 20, 2013

7.6 ADMNET API Receive Socket Functions ... 80

8 DOS 6 XL Reference Manual 89

9 Glossary of Terms 91

10 Support, Service & Warranty 95

10.1 Contacting Technical Support ... 95
10.2 Warranty Information .. 96

Index 97

Introduction ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 7 of 98
February 20, 2013

1 Introduction

In This Chapter

 Operating System .. 7

This document provides information needed to develop application programs for
the ProLinx ADMNET 'C' Programmable Module with Ethernet. The modules are
programmable to accommodate devices with unique Ethernet protocols.

This document includes information about the available Ethernet communication
software API libraries, programming information, and example code.

This document assumes the reader is familiar with software development in the
16-bit DOS environment using the 'C' programming language.

1.1 Operating System

The ProLinx module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multitasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows you to develop applications using standard DOS tools,
such as Borland compilers. In addition to ProLinx-ADMNET, WATTCP.CFG is
required to assign an IP address to the module.

The format of the WATTCP.CFG is as follows:

ProSoft Technology

Default private class 3 address

my_ip=192.168.0.148

Default class 3 network mask

netmask=255.255.255.0

name server 1 up to 9 may be included

nameserver=xxx.xxx.xxx.xxx

name server 2

nameserver=xxx.xxx.xxx.xxx

The gateway I wish to use

gateway=192.168.0.1

some networks (class 2) require all three parameters

gateway,network,subnetmask

gateway 192.168.0.1,192.168.0.0,255.255.255.0

The name of my network

domainslist="mynetwork.name"

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the ProLinx module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

ADMNET-MCM ♦ ProLinx Standalone Introduction
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 8 of 98 ProSoft Technology, Inc.
February 20, 2013

Preparing the ProLinx-ADMNET Module ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 9 of 98
February 20, 2013

2 Preparing the ProLinx-ADMNET Module

In This Chapter

 Package Contents ... 9

 Jumper Locations and Settings ... 9

 Connections .. 9

2.1 Package Contents

Your ProLinx-ADMNET package includes:

 ProLinx-ADMNET Module
 ProSoft Technology Solutions CD-ROM (includes all documentation, sample

code, and sample ladder logic).
 Null Modem Cable
 Mini-DIN to DB-9 Cable

2.2 Jumper Locations and Settings

Each module has the following jumpers:

 Debug
 Port 0

2.2.1 Debug and Port 0 Jumpers

These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

2.3 Connections

2.3.1 ProLinx-ADMNET Communication Ports

The ProLinx-ADMNET module has multiple physical connectors: up to four serial
application ports and one debugging port, with an RJ45 plug and Ethernet port
located on the front of the module.

ADMNET-MCM ♦ ProLinx Standalone Preparing the ProLinx-ADMNET Module
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 10 of 98 ProSoft Technology, Inc.
February 20, 2013

2.3.2 Cable Connections

The application ports on the ADMNET-MCM module support RS-232, RS-422,
and RS-485 interfaces. Please inspect the module to ensure that the jumpers are
set correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require
hardware handshaking (control and monitoring of modem signal lines). Enable this in the
configuration of the module by setting the UseCTS parameter to 1.

RS-232

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

RS-232: Modem Connection

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for
most modem applications.

Preparing the ProLinx-ADMNET Module ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 11 of 98
February 20, 2013

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

Note: If the port is configured with the "Use CTS Line" set to 'Y', then a jumper is required between
the RTS and the CTS line on the module connection.

ADMNET-MCM ♦ ProLinx Standalone Preparing the ProLinx-ADMNET Module
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 12 of 98 ProSoft Technology, Inc.
February 20, 2013

RS-232 Configuration/Debug Port

This port is physically a Mini-DIN connection. A Mini-DIN to DB-9 adapter cable
is included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

RS-485

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

Note: Terminating resistors are generally not required on the RS-485 network, unless you are
experiencing communication problems that can be attributed to signal echoes or reflections. In this
case, install a 120-ohm terminating resistor on the RS-485 line.

Preparing the ProLinx-ADMNET Module ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 13 of 98
February 20, 2013

RS-422

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-
and A/B polarities differently.

DB9 to Mini-DIN Adaptor (Cable 09)

ADMNET-MCM ♦ ProLinx Standalone Preparing the ProLinx-ADMNET Module
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 14 of 98 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 15 of 98
February 20, 2013

3 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 15

 Downloading Files to the Module .. 32

3.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the ProLinx platform. The following topics
describe the setup procedures for each of the supported compilers.

3.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  Open from the Main
Menu.

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 16 of 98 ProSoft Technology, Inc.
February 20, 2013

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_PLX\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).
4 Click OK. The Project window appears:

5 Click Project  Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 17 of 98
February 20, 2013

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be

accessed by clicking Project  Settings from the Main Menu.

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project  New from the Main
Menu.

2 Select the path and type in the Project Name.

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 18 of 98 ProSoft Technology, Inc.
February 20, 2013

3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.
6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 19 of 98
February 20, 2013

11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 20 of 98 ProSoft Technology, Inc.
February 20, 2013

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

16 Click Project  Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the ProLinx platform.

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 21 of 98
February 20, 2013

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 22 of 98 ProSoft Technology, Inc.
February 20, 2013

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 23 of 98
February 20, 2013

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 24 of 98 ProSoft Technology, Inc.
February 20, 2013

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.

27 Click Parse  Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project  Build All from the Main Menu.
29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_PLX\SAMPLES\…).

The Project Settings window can be accessed by clicking Project  Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 25 of 98
February 20, 2013

3.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology, using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project  Open Project from the Main
Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).
4 Click OK. The Project window appears:

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 26 of 98 ProSoft Technology, Inc.
February 20, 2013

5 Click Project  Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options  Project Menu from the Main Menu.

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 27 of 98
February 20, 2013

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File  Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.
7 Click OK. A Project window appears:

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 28 of 98 ProSoft Technology, Inc.
February 20, 2013

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.
12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 29 of 98
February 20, 2013

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

14 Click Options  Project from the Main Menu.

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 30 of 98 ProSoft Technology, Inc.
February 20, 2013

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 31 of 98
February 20, 2013

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project  Build All from the Main Menu.
20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options  Project from the Main
Menu.

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 32 of 98 ProSoft Technology, Inc.
February 20, 2013

3.2 Downloading Files to the Module

1 Connect your PC’s COM port to the ProLinx Configuration/Debug port using
the Null Modem cable and ProLinx Adapter cable.

2 From the Start Menu on your PC, select Programs  Accessories 

Communications  HyperTerminal. The New Connection Screen appears:

3 Enter a name and choose OK. The Connect To window appears:

Setting Up Your Development Environment ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 33 of 98
February 20, 2013

4 Choose the COM port that your ProLinx module is connected to and choose
OK. The COM1 Properties window appears.

5 Ensure that the settings shown on this screen match those on your PC.
6 Click OK. The HyperTerminal window appears with a DOS prompt and

blinking cursor.
7 Apply power to the ProLinx module and hold down the [L] key. The screen

displays information and ultimately displays the Loader menu:

ADMNET-MCM ♦ ProLinx Standalone Setting Up Your Development Environment
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 34 of 98 ProSoft Technology, Inc.
February 20, 2013

This menu provides options that allow you to download a configuration file [C], a
WATTCP file [W], or a new executable file [U]. You can also press [V] to view
module version information.

1 Type [U] at the prompt to transfer executable files from the computer to the
ProLinx unit.

2 Type [Y] when the program asks if you want to load an .exe file.

3 From the HyperTerminal menu, select Transfer Send.

4 When the Send To screen appears, browse for the executable file to send to
the module. Be sure to select Y Modem in the Protocol field.

5 Click Send. The program loads the new executable file to the ProLinx
module. When the download is complete, the program returns to the Loader
menu.

If you want to load a new configuration file or a WATTCP file, select the
appropriate option and perform the same steps to download these files.

6 Press [Esc], then [Y] to confirm module reboot.

Programming the Module ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 35 of 98
February 20, 2013

4 Programming the Module

In This Chapter

 Debugging Strategies .. 35

 RS-485 Programming Note ... 35

This section describes how to get your application running on the ProLinx
module. Once an application has been developed using the serial API, it must be
downloaded to the ProLinx module in order to run. The application may then be
run manually from the console command line, or automatically on boot from the
AUTOEXEC.BAT or CONFIG.SYS files.

4.1 Debugging Strategies

For simple debugging, printf’s may be inserted into the module application to
display debugging information on the console connected to the Debug port.

4.2 RS-485 Programming Note

4.2.1 Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

ADMNET-MCM ♦ ProLinx Standalone Programming the Module
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 36 of 98 ProSoft Technology, Inc.
February 20, 2013

RS-485 Transmit / Receive

Unit A

Unit B

Unit B

Unit A

RTS

Transmit

Data

RTS

Transmit

Data

RTS On RTS Off

Optional

RTS On

Delay

Optional

RTS Off

Delay

4.2.2 Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)

// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);

// Check to see that message is done

MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)

// Set RTS off

MVIsp_SetRTS(COM2, OFF);

Understanding the ProLinx-ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 37 of 98
February 20, 2013

5 Understanding the ProLinx-ADMNET API

In This Chapter

 API Libraries .. 37

 Development Tools ... 38

 Theory of Operation .. 39

 ADM API Files ... 39

The ProLinx ADM API Suite allows software developers access to the top layer
of the serial and Ethernet ports. The ProLinx-ADMNET API suite accesses the
Ethernet port. Both APIs can be easily used without having detailed knowledge of
the module’s hardware design. The ProLinx ADMNET API Suite consists the
Ethernet Port API. The Ethernet Port API provides access to the Ethernet
network. Refer to the ProLinx ADM-MCM Developer's Guide for information on
integrating your application with the MCM protocol.

Applications for the ProLinx ADMNET module may be developed using industry-
standard DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the ProLinx ADMNET module.

5.1 API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note: The following compiler versions are intended to be compatible with the ProLinx module API:
 Digital Mars C++ 8.49
 Borland C++ V5.02
More compilers will be added to the list as the API is tested for compatibility with them.

5.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

ADMNET-MCM ♦ ProLinx Standalone Understanding the ProLinx-ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 38 of 98 ProSoft Technology, Inc.
February 20, 2013

5.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

5.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is also provided. The sample application may
be compiled using Digital Mars or Borland C++.

5.1.4 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

 DOS libraries have been tested and are thread-safe for use in multi-threaded
applications.

 MVIsp libraries are safe to use in multi-threaded applications with the
following precautions: If you call the same MVIsp function from multiple
threads, you will need to protect it, to prevent task switches during the
function's execution. The same is true for different MVIsp functions that share
the same resources (for example, two different functions that access the
same read or write buffer).

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

5.2 Development Tools

An application that is developed for the ADMNET-MCM module must be stored
on the module’s Flash ROM disk to be executed. A loader program is provided
with the module, to download an executable, configuration file or wattcp.cfg file
via module port 0, as needed.

Understanding the ProLinx-ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 39 of 98
February 20, 2013

5.3 Theory of Operation

5.3.1 ADM API

The ADMNET API is one component of the ProLinx ADM API Suite. The
ADMNET API provides a simple module-level interface that is portable between
members of the ProLinx Family. This is useful when developing an application
that implements a serial-Ethernet protocol for a particular device, such as a scale
or bar code reader. After an application has been developed, it can be used on
any of the ProLinx family modules.

5.3.2 ADMNET API Architecture

The ADMNET API is composed of a statically-linked library (called the ADMNET
library). Applications using the ADMNET API must be linked with the ADMNET
library.

The following illustration shows the relationship between the API components.

5.4 ADM API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description

ADMNETAPI.H Include file

ADMNETAPI.LIB Library (16-bit OMF format)

ADMNET-MCM ♦ ProLinx Standalone Understanding the ProLinx-ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 40 of 98 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 41 of 98
February 20, 2013

6 Application Development Function Library -
ADMNET API

In This Chapter

 ADMNET API Functions .. 41

 ADMNET API Initialize Functions .. 42

 ADMNET API Release Socket Functions .. 44

 ADMNET API Send Socket Functions ... 46

 ADMNET API Receive Socket Functions .. 48

 ADMNET API Miscellaneous Functions .. 50

6.1 ADMNET API Functions

This section provides detailed programming information for each of the ADMNET
API library functions. The calling convention for each API function is shown in 'C'
format.

The same set of API functions is supported for all of the modules in the ProLinx
family.

API library routines are categorized according to functionality.

Function Category Function Name Description

Initialize Socket ADM_init_socket Initialize number of sockets used on each port
number and assign name to each port.

 ADM_open_sk Open and reopen each socket separately after
socket is initialized or closed.

Release Socket ADM_release_sockets Release all sockets that have been initialized
using ADM_init_socket.

 ADM_close_sk Close each socket separately without release
socket.

Send Socket ADM_send_socket Send socket according to name assign
throughout initialization process as either UDP
or TCP. This function also takes care of
opening socket connection.

 ADM_send_sk Send socket with previously open with function
ADM_open_sk.

Receive Socket ADM_receive_socket Receive socket according to name assigned
throughout initialization process as either UDP
or TCP. This function also takes care of
opening socket connection.

 ADM_receive_sk Receive socket with previously open with
function ADM_open_sk.

Miscellaneous ADM_NET_GetVersionInfo Get ADMNET API version information.

ADM_is_sk_open Test if the socket is still open.

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 42 of 98 ProSoft Technology, Inc.
February 20, 2013

6.2 ADMNET API Initialize Functions

The following topics describe the ADMNET API Initialize functions.

ADM_init_socket

Syntax

int ADM_init_socket(int numSK, int portNum, int buffSize, char *name);

Parameters

numSK Variable indicating how many sockets to use.

portNum Port Number.

buffSize The size of the buffer available in each socket.

name The name of the socket.

Description

ADM_init_socket acquires access to the ADMNET API and dynamically
generates a set of sockets according to numSK and assigns portNum, buffSize,
then names each socket that the application will use in subsequent functions.
This function must be called before any of the other API functions can be used.

IMPORTANT After the API has been opened, ADM_Release_Sockets should always be called
before exiting the application.

Return Value

SK_SUCCESS API has successfully initialized variables.

SK_PORT_NOT_ALLOW API does not allow port number used.

SK_CANNOT_ALLOCATE_MEMORY API cannot allocate memory.

Example

int numSK = 5;

int portNum = 5757;

int buffSize = 1000;

if(ADM_init_socket(numSK, portNum, buffSize, "ReceiveSK") != SK_SUCCESS)

{

 printf("\nFailed to open ADM API... exiting program\n");

 ADM_release_sockets();

}

See Also

ADM_release_sockets (page 44)

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 43 of 98
February 20, 2013

ADM_open_sk

Syntax

int ADM_open_sk(char *skName, char *ServerIPAddress, int protocol);

Parameters

skName Name of the socket that has been initialized and used to send data.

ServerIPAddress IP address that will be used to send data to.

protocol Specified protocol to send over Ethernet (USE_TCP or USE_UDP).

Description

ADM_open_sk opens a socket according to the name previously initialized,
skName, with ADM_init_socket given, and assigns IP address, ServerIPAddress
for send function with specific protocol, either UDP or TCP. ADM_init_socket
must be used before this function.

IMPORTANT: After the API has been opened, ADM_close_sk should always be called for closing
the socket. 0.0.0.0 passes as ServerIPAddress to open socket as a server to listen to a message
from client.

Return Value

SK_SUCCESS API has successfully opened socket.

SK_PROCESS_SOCKET Open is still in process.

SK_NOT_FOUND API could not find an initialized socket with the name passed to the
function.

SK_TIMEOUT Time out opening socket.

SK_OPEN_FAIL Socket could not be opened.

Example

char sockName1[] = "SendSocket";

int buffSize1 = 4096;

int port_1 = 6565;

int numSocket1 = 1;

int result;

sock_init(); //initialize the socket interface

ADM_init_socket(numSocket1, port_1, buffSize1, sockName1);

while ((result = ADM_open_sk(sockName1, "0.0.0.0",

USE_TCP))==SK_PROCESS_SOCKET);

if (result==SK_SUCCESS)

{

 printf("successfully Opened a connection!\n");

} else {

 printf("Error Opening a connection! %d\n", result);

}

See Also

ADM_close_sk (page 45)

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 44 of 98 ProSoft Technology, Inc.
February 20, 2013

6.3 ADMNET API Release Socket Functions

This section describes the ADMNET API Release Socket Functions.

ADM_release_sockets

Syntax

int ADM_release_sockets(void);

Parameters

none

Description

This function is used by an application to release all sockets created by
ADM_init_socket.

IMPORTANT: After a socket has been generated, this function should always be called before
exiting the application.

Return Value

SK_SUCCESS API was successfully released all the sockets.

Example

ADM_release_sockets();

See Also

ADM_init_socket (page 42)

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 45 of 98
February 20, 2013

ADM_close_sk

Syntax

int ADM_close_sk(char *skName);

Parameters

skName Name of the socket that has been initialized and used
to send data.

Description

This function is used by an application to close socket opened by ADM_open_sk.

IMPORTANT: After a socket has been opened, this function should always be called to close
socket, but not release socket.

Return Value

SK_SUCCESS API was successfully released all the sockets.

SK_NOT_FOUND API could not find an initialized socket with the name
passed to the function.

Example

char sockName1[] = "SendSocket";

ADM_close_sk(sockName1);

printf ("Connection Closed!\n");

See Also

ADM_init_socket (page 42)

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 46 of 98 ProSoft Technology, Inc.
February 20, 2013

6.4 ADMNET API Send Socket Functions

This section describes the ADMNET API Send Socket functions.

ADM_send_socket

Syntax

int ADM_send_socket(char *skName, char *holdSendPtr, int *sendLen, char

*ServerIPAddress, int protocol);

Parameters

skName Name of the socket that has been initialized and used to
send data.

holdSendPtr Pointer to a string of data that will be sent to the
ServerIPAddress

sendLen Number of data specified to send.

ServerIPAddress IP address that will be used to send data to.

protocol Specified protocol to send over Ethernet (USE_TCP or
USE_UDP).

Description

To simplify a program, this function opens connection and sends message.
skName must be a valid name that has been initialized with ADM_init_socket.

Return Value

SK_SUCCESS Socket is successfully sent.

SK_NOT_FOUND Socket could not be found.

SK_PROCESS_SOCKET Socket is in the process of sending.

Example

int sendLen = 10;

int se;

se = ADM_send_socket("sendSK", "1234567890", &sendLen, "192.168.0.148",

USE_UDP);

if(se == SK_SUCCESS)

{

 printf("send Success\n");

}

See Also

ADM_receive_socket (page 48)

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 47 of 98
February 20, 2013

ADM_send_sk

Syntax

int ADM_send_sk(char *skName, char *holdSendPtr, int *sendLen);

Parameters

skName Name of the socket that has been initialized and used
to send data.

holdSendPtr Pointer to a string of data that will be sent to the
ServerIPAddress

sendLen Number of data specified to send.

Description

ADM_ send _sk sends with a socket previously open using ADM_open_sk.

Return Value

SK_SUCCESS API has successfully open socket.

SK_PROCESS_SOCKET Open process is still in

SK_NOT_FOUND API could not find an initialized socket with the name
passed to the function.

Example

char sockName1[] = "SendSocket";

char holdingReg[100];

int buffSize1 = 4096;

int port_1 = 6565;

int numSocket1 = 1;

int result;

sock_init(); //initialize the socket interface

ADM_init_socket(numSocket1, port_1, buffSize1, sockName1);

sprintf(holdingReg,"abcdefghijklmnopqrstuvwxyz-");

sendLen = 27;

while ((result = ADM_send_sk(sockName1, holdingReg, &sendLen)) ==

SK_PROCESS_SOCKET);

if(result == SK_SUCCESS)

{

printf("Data: %s Sent \n", holdingReg);

} else {

printf("Error sending data\n");

}

See Also

ADM_receive_sk (page 49)

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 48 of 98 ProSoft Technology, Inc.
February 20, 2013

6.5 ADMNET API Receive Socket Functions

This section describes the ADMNET API Receive Socket functions.

ADM_receive_socket

Syntax

int ADM_receive_socket(char *skName, char *holdRecPtr, int *readLen, int

protocol);

Parameters

skName Name of the socket that has been initialized and used to receive data.

holdRecPtr Pointer to a buffer to hold data that will be received by the API.

readLen Length of data received by the API.

protocol Specified protocol to receive over Ethernet (USE_TCP or USE_UDP).

Description

To simplify a program, this function opens connection and receives message.

Return Value

SK_SUCCESS Socket is successfully sent.

SK_NOT_FOUND Socket could not be found.

SK_PROCESS_SOCKET Socket is in the process of sending.

Example

char hold[5000];

int readLen;

int se, i;

se = ADM _receive_socket("receiveSK", holdingReg, &readLen, USE_UDP);

if(se == SK_SUCCESS)

{

 printf("Length == %d\n", readLen);

 for (i=0; i<readLen; i++)

 {

 printf("%02X ", *(holdingReg+i));

 if(i%10 == 0) printf("\n");

 }

 printf("\n");

}

See Also

ADM_send_socket (page 46)

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 49 of 98
February 20, 2013

ADM_receive_sk

Syntax

int ADM_receive_sk(char *skName, char *holdRecPtr, int *readLen, char *fromIP);

Parameters

skName Name of the socket that has been initialized and used to receive data.

holdRecPtr Pointer to a buffer to hold data that will be received by the API.

readLen Length of data received by the API.

fromIP Pointer to character array which in turn return with client IP.

Description

This function receives socket after ADM_open_sk is used. skName must be a
valid name that has been initialized with ADM_init_socket.

Return Value

SK_SUCCESS Socket is successfully sent.

SK_NOT_FOUND Socket could not be found.

SK_PROCESS_SOCKET Socket is in the process of sending.

SK_TIMEOUT Time out opening socket.

Example

char sockName1[] = "SendSocket";

char holdingReg[100];

int result;

while ((result=ADM_receive_sk(sockName1, holdingReg, &readLen, fromIP)) ==

SK_PROCESS_SOCKET);

if(result == SK_SUCCESS){

printf("Received data!\n");

 printf("Length == %d\n", readLen);

 for (i=0; i<readLen; i++)

 {

 printf("%c", *(holdingReg+i));

 }

 printf("\n");

} else {

 printf("Received no data Error: %d\n",result);

}

See Also

ADM_send_socket (page 46)

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 50 of 98 ProSoft Technology, Inc.
February 20, 2013

6.6 ADMNET API Miscellaneous Functions

ADM_NET_GetVersionInfo

Syntax

void ADM_NET_GetVersionInfo(ADMNETVERSIONINFO* admnet_verinfo);

Parameters

admnet_verinfo Pointer to structure of type ADMNETVERSIONINFO.

Description

ADM_GetVersionInfo retrieves the current version of the ADMNET API library.
The information is returned in the structure admnet_verinfo.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{

 char APISeries[4];

 short APIRevisionMajor;

 short APIRevisionMinor;

 long APIRun;

}ADMNETVERSIONINFO;

Return Value

None

Example

ADMNETVERSIONINFO verinfo;

/* print version of API library */

ADM_NET_GetVersionInfo(& verinfo);

printf("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

Application Development Function Library - ADMNET API ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 51 of 98
February 20, 2013

ADM_is_sk_open

Syntax

int ADM_is_sk_open(char *skName);

Parameters

skName Name of the socket that has been initialized and used to receive data.

Description

ADM_is_sk_open tests if connection is still valid or not.

Return Value

SK_SUCCESS Socket is successfully sent.

SK_NOT_FOUND Socket could not be found.

SK_SOCKET_CLOSE Socket is closed.

Example

char sockName1[] = "SendSocket";

if(ADM_is_sk_open(sockName1) != SK_SUCCESS) {

 printf("Socket not Opened\n");

} else {

 printf("Socket Opened\n");

}

ADMNET-MCM ♦ ProLinx Standalone Application Development Function Library - ADMNET API
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 52 of 98 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 53 of 98
February 20, 2013

7 WATTCP API Functions

In This Chapter

 WATTCP API Functions .. 53

 ADMNET API Initialize Functions .. 55

 ADMNET API System Functionality .. 56

 ADMNET API Release Socket Functions .. 71

 ADMNET API Send Socket Functions ... 74

 ADMNET API Receive Socket Functions .. 80

7.1 WATTCP API Functions

This API is a TCP/IP stack, which is used on ADMNET API. Parts of this
document are brought from Waterloo TCP by Erik Engelke. Each section
provides detailed programming information for each WATTCP API library
function. The calling convention for each API function is shown in 'C' format.

The API library routines are categorized according to functionality as shown in
the following table.

Function Category Function Name Description

Initialize Socket sock_init TCP/IP system initialization.

System Functionality tcp_tick Determine socket connection.

 tcp_open &

tcp_open_fast

Generate socket session to a host
computer for TCP protocol.
tcp_open_fast will have no wait for if the
host computer is not found.

 udp_open &

udp_open_fast

Generate socket session to a host
computer for UDP protocol.
udp_open_fast will have no wait for if the
host computer is not found.

 resolve Convert string IP Address into a
longword.

 sock_mode Setup socket protocol transfer mode for
the particular use (UDP or TCP).

 sock_established Check if connect has been established.

 ip_timer_init Initialize timing.

 ip_timer_expired Check if timer has been expired.

 set_timeout Set timer.

 chk_timeout Check timer if expired.

 sockerr Return ASCII error message if there is
any.

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 54 of 98 ProSoft Technology, Inc.
February 20, 2013

Function Category Function Name Description

 sockstate Return ASCII message what is the
current state.

 gethostid Returned value is the IP address in host
format.

Release Socket sock_exit Release all the TCP/IP system initialized
by sock_init.

 sock_abort Abort a connection.

 sock_close Close a connection.

Send Socket sock_write &

sock_fastwrite

Write data out to a port. sock_fastwrite
will have no check for data written out to
the socket.

 sock_flush Flush data out to the socket to make
sure all the data has been sent.

 sock_flushnext Call before write the data out to make
sure that after write the data out to the
socket, buffer will be flushed.

 sock_puts Put string onto the buffer.

 sock_putc Put a character onto the buffer.

Receive Socket sock_read & sock_fastread Read data coming into a port.

 tcp_listen Listen to a message coming in to a
specified port.

 sock_gets Get String

 sock_getc Get Character

 sock_dataready Return the number data ready to be
read.

 rip Remove carriage returns and line feeds.

Miscellaneous inet_ntoa Build ASCII representation of an IP
address with a user supply string from
decimal representation of the IP
address.

 inet_addr Convert string dot address to host
format.

 ntohs Convert network word to host word

 htons Convert host word to network word

 ntohl Convert network longword to host
longword

 htonl Convert host longword to network
longword

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 55 of 98
February 20, 2013

7.2 ADMNET API Initialize Functions

The following topics detail the ADMNET API Initialize functions.

sock_init

Syntax

void sock_init(void);

Parameters

None

Description

This function will read a stored TCP/IP configuration file and prepare a variable.

Return Value

SK_SUCCESS API has successfully initialized variables.

SK_PORT_NOT_ALLOW API does not allow port number used.

SK_CANNOT_ALLOCATE_MEMORY API cannot allocate memory.

Example

int numSK = 5;

int portNum = 5757;

int buffSize = 1000;

sock_init(); //initialize the socket interface

/* initialize each socket */

if(ADM_init_socket(numSK, portNum, buffSize, "ReceiveSK") != SK_SUCCESS)

{

 printf("\nFailed to open ADM API... exiting program\n");

 ADM_release_sockets();

}

See Also

sock_exit (page 71)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 56 of 98 ProSoft Technology, Inc.
February 20, 2013

7.3 ADMNET API System Functionality

The following topics describe the ADMNET API System Functionality calls.

tcp_tick

Syntax

int tcp_tick(sock_type *skType);

Parameters

skType Current socket Type or NULL for all sockets.

Description

This function is used by an application to determine the connection status of the
sockets.

Return Value

0 disconnected or reset.

>0 connected.

Example

sock_type *socket;

 . . .

if(tcp_tick(socket)) //check socket

{

 printf("Connected\n");

}

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 57 of 98
February 20, 2013

tcp_open

Syntax

int tcp_open(tcp_Socket *sk, word lPort, longword ina, word port,

dataHandler_t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

lPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description

This function opens a TCP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be used to convert an IP
address into longword-formatted variable.

Return Value

 Connection cannot be made

>0 Connection is made

Example

tcp_Socket *socket;

 . . .

if(tcp_open(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{

 printf("Open Successfully\n");

}

See Also

resolve (page 61)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 58 of 98 ProSoft Technology, Inc.
February 20, 2013

tcp_open_fast

Syntax

int tcp_open_fast(tcp_Socket *sk, word lPort, longword ina, word port,

dataHandler_t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

lPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description

This function opens a TCP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address. IPort is an option parameter. Most of the time, IPort can be set to 0. The
API will find an available port number for the socket. ina is a host IP address
passed as a longword. Function resolve can be used to convert an IP address
into a longword-formatted variable.

Return Value

 Connection cannot be made

>0 Connection is made

Example

tcp_Socket *socket;

 . . .

if(tcp_open_fast(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{

 printf("Open Successfully\n");

}

See Also

resolve (page 61)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 59 of 98
February 20, 2013

udp_open

Syntax

int udp_open(udp_Socket *sk, word lPort, longword ina, word port,

dataHandler_t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

lPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description

This function opens a UDP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be use to convert an IP
address into a longword-formatted variable.

Return Value

 Connection cannot be made

>0 Connection is made

Example

udp_Socket *socket;

 . . .

if(udp_open(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{

 printf("Open Successfully\n");

}

See Also

resolve (page 61)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 60 of 98 ProSoft Technology, Inc.
February 20, 2013

udp_open_fast

Syntax

int udp_open_fast(tcp_Socket *sk, word lPort, longword ina, word port,

dataHandler_t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

lPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

Description

This function opens a UDP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address that passes the function. IPort is an option parameter. Most of the time,
IPort can be set to 0. The API will find an available port number for the socket.
ina is a host IP address passed as a longword. Function resolve can be used to
convert an IP address into a longword-formatted variable.

Return Value

 Connection cannot be made

>0 Connection is made

Example

udp_Socket *socket;

 . . .

if(udp_open_fast(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{

 printf("Open Successfully\n");

}

See Also

resolve (page 61)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 61 of 98
February 20, 2013

resolve

Syntax

longword resolve(char *name);

Parameters

name String IP Address.

Description

This function converts a string IP Address into a long.

Return Value

longword Value of the IP Address in a long format.

Example

resolve("192.168.0.1");

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 62 of 98 ProSoft Technology, Inc.
February 20, 2013

sock_mode

Syntax

word sock_mode(sock_type *skType, word mode);

Parameters

skType Current socket Type that will be used to set up socket mode.

mode The following is the available mode:

 TCP_BINARY 0 default

 TCP_ASCII 1 treat as ASCII data

 UDP_CRC 0 checksum enable

 UDP_NOCRC 2 checksum disable

 TCP_NAGLE 0 default

 TCP_NONAGLE 4 used for real time application.

Description

This function is used set the socket transfer protocol mode.

Return Value

Current mode.

Example

sock_type *socket;

 . . .

sock_mode(socket, TCP_MODE_NONAGLE);

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 63 of 98
February 20, 2013

sock_established

Syntax

int sock_established(sock_type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function is used check if the socket has been established.

Return Value

 Not established.

1 Establish

Example

sock_type *socket;

 . . .

if(sock_established(socket))

{

 printf("Socket has been established\n");

}

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 64 of 98 ProSoft Technology, Inc.
February 20, 2013

ip_timer_init

Syntax

void ip_timer_init(sock_type *skType, word second);

Parameters

skType Current socket Type that will be used to check the connection.

second Number of second to set the timer. 0 mean no timer out.

Description

This function is used initialize the timer.

Return Value

None

Example

sock_type *socket;

 . . .

ip_timer_init (socket, 100);

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 65 of 98
February 20, 2013

ip_timer_expired

Syntax

word ip_timer_expired(sock_type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function is used check if the timer has been expired.

Return Value

1 timer has been expired.

Example

sock_type *socket;

 . . .

if(ip_timer_expired (socket))

{

 printf("time’s up\n");

}

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 66 of 98 ProSoft Technology, Inc.
February 20, 2013

set_timeout

Syntax

longword set_timeout(word seconds);

Parameters

seconds Number of second to set the timer.

Description

This function is used set the timer.

Return Value

Number of timeout.

Example

set_timeout (100);

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 67 of 98
February 20, 2013

chk_timeout

Syntax

word chk_timeout(longword timeout);

Parameters

timeout Number of timeout return from set_timerout.

Description

This function is used check if the time is out.

Return Value

1 timeout

Example

int timeout = set_timeout (100);

While(!chk_timeout (timeout))

 printf("Not timeout yet\n");

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 68 of 98 ProSoft Technology, Inc.
February 20, 2013

sockerr

Syntax

char *sockerr (sock_type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function returns ASCII error message if there is any. Otherwise, NULL is
returned.

Return Value

String message or NULL if there is no error.

Example

sock_type *socket;

char *p;

 . . .

if(p = sockerr(socket) != NULL)

{

 printf("Error: %s\n", p);

}

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 69 of 98
February 20, 2013

sockstate

Syntax

char *sockstate (sock_type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function returns ASCII message indicating current state.

Return Value

String message.

Example

sock_type *socket;

char *p;

 . . .

if(p = sockstate(socket) != NULL)

{

 printf("State: %s\n", p);

}

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 70 of 98 ProSoft Technology, Inc.
February 20, 2013

gethostid

Syntax

char *gethostid (void);

Parameters

None

Description

This function returns value of the IP address in host format.

Return Value

String IP Address.

Example

sock_type *socket;

char *p;

 . . .

if(p = gethostid(socket) != NULL)

{

 printf("My IP: %s\n", p);

}

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 71 of 98
February 20, 2013

7.4 ADMNET API Release Socket Functions

This section describes the ADMNET API Release Socket Functions.

sock_exit

Syntax

void sock_exit(void);

Parameters

None

Description

This function is used by an application to release all the TCP/IP variables created
by sock_init.

Return Value

None

Example

sock_exit();

See Also

sock_init (page 55)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 72 of 98 ProSoft Technology, Inc.
February 20, 2013

sock_abort

Syntax

void sock_abort(sock_type *skType);

Parameters

skType Current socket Type that will be used to abort the connection.

Description

This function is used abort a connection. This function is common for TCP
connections.

Return Value

None

Example

sock_type *socket;

 . . .

sock_abort(socket);

See Also

sock_close (page 73)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 73 of 98
February 20, 2013

sock_close

Syntax

void sock_close (sock_type *skType);

Parameters

skType Current socket Type that will be used to close the connection.

Description

This function is used to permanently close a connection. This function is common
for UDP connections.

Return Value

None

Example

sock_type *socket;

 . . .

sock_close(socket);

See Also

sock_abort (page 72)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 74 of 98 ProSoft Technology, Inc.
February 20, 2013

7.5 ADMNET API Send Socket Functions

This section describes the ADMNET API Send Socket functions.

sock_write

Syntax

int sock_write(sock_type *skType, byte *data, int len);

Parameters

skType Socket that will be used to send data.

data Pointer to a buffer that contains data that will be sent to a server.

len Length of the data specified to send.

Description

This function writes data to the socket being passed to the function. The function
will wait until the all the data is written.

Return Value

Number of Bytes that are written to the socket or -1 if an error occurs.

Example

sock_type *socket;

char theBuffer [512];

int len, bytes_sent;

 . . .

bytes_sent = sock_write(socket, (byte*)theBuffer, len);

See Also

sock_fastwrite (page 75)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 75 of 98
February 20, 2013

sock_fastwrite

Syntax

int sock_fastwrite(sock_type *skType, byte *data, int len);

Parameters

skType Current socket that will be used to send data.

data Pointer to a buffer that contains data that will be sent to a server.

len Length of data specified to send.

Description

This function writes data to the socket being passed to the function. The function
will not check to the data written out to the socket.

Return Value

Number of bytes that are written to the socket or -1 if an error occurs.

Example

sock_type *socket;

char theBuffer [512];

int len, bytes_sent;

 . . .

bytes_sent = sock_fastwrite(socket, (byte*)theBuffer, len);

See Also

sock_write (page 74)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 76 of 98 ProSoft Technology, Inc.
February 20, 2013

sock_flush

Syntax

void sock_flush(sock_type *skType);

Parameters

skType Current socket that will be used to flush all the data out of the buffer.

Description

This function is used to flush all the data that is still in the buffer out to the socket.
This function has no effect for UDP, since UDP is a connectionless protocol.

Return Value

None

Example

sock_type *socket;

 . . .

sock_flush(socket); // Flush the output

See Also

sock_flushnext (page 77)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 77 of 98
February 20, 2013

sock_flushnext

Syntax

void sock_flushnext(sock_type *skType);

Parameters

skType Current socket that will be used to flush all the data in the buffer out.

Description

This function is used after the write function is called to ensure that the data in a
buffer is flushed immediately.

Return Value

None

Example

sock_type *socket;

 . . .

sock_flushnext(socket); // Flush the output

See Also

sock_flush (page 76)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 78 of 98 ProSoft Technology, Inc.
February 20, 2013

sock_puts

Syntax

int sock_puts(sock_type *skType, byte *data);

Parameters

e Socket that will be used to put string data to.

data Pointer to the string that will be sent.

Description

This function sends a string to the socket. Character new line "\n", will be
attached to the end of the string.

Return Value

The length that is written to the socket.

Example

sock_type *socket;

char data [512];

int len;

 . . .

len = sock_puts(socket, data);

printf("Put %d\n", len);

See Also

sock_putc (page 79)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 79 of 98
February 20, 2013

sock_putc

Syntax

byte sock_putc(sock_type *skType, byte character);

Parameters

skType Socket that will be used to get string data from.

character A character that is used.

Description

This function is used to put one character at a time to the socket.

Return Value

Character put in is returned.

Example

sock_type *socket;

char in;

 . . .

in = sock_putc(socket, 'A');

printf("%c", in);

See Also

sock_puts (page 78)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 80 of 98 ProSoft Technology, Inc.
February 20, 2013

7.6 ADMNET API Receive Socket Functions

This section describes the ADMNET API Receive Socket functions.

sock_read

Syntax

int sock_read(sock_type *skType, byte *data, int len);

Parameters

skType Socket that will be used to receive data.

data Pointer to a buffer that contains data that is received.

len Length of the data specified to receive.

Description

This function reads data from the socket being passed to the function. The
function will wait until the all the data is read.

Return Value

Number of Bytes that are read to the socket or -1 if an error occurs.

Example

sock_type *socket;

char theBuffer [512];

int len, bytes_receive;

 . . .

bytes_receive = sock_read(socket, (byte*)theBuffer, len);

See Also

sock_fastread (page 81)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 81 of 98
February 20, 2013

sock_fastread

Syntax

int sock_fastread(sock_type *skType, byte *data, int len);

Parameters

skType Current socket that will be used to receive data.

data Pointer to a buffer that contains data that is received to a server.

len Length of data specified to receive.

Description

This function reads data to the socket being passed to the function. The function
will not check to the data read into the socket.

Return Value

Number of bytes that are read to the socket or -1 if an error occurs.

Example

sock_type *socket;

char theBuffer [512];

int len, bytes_receive;

 . . .

bytes_receive = sock_fastread(socket, (byte*)theBuffer, len);

See Also

sock_read (page 80)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 82 of 98 ProSoft Technology, Inc.
February 20, 2013

tcp_listen

Syntax

int tcp_listen(tcp_Socket *sk, word lPort, longword ina, word port,

dataHandler_t datahandler, word timeout);

Parameters

sk Pointer to the socket that has been initialized.

lPort Local port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

ina Host IP Address.

port Host port number.

timeout Value used to set the period of time to wait for data. 0 is set to indicate no
timeout.

Description

This function is used for listening to an incoming message. port is an option
parameter. Most of the time, port can be set to 0. The API will find an available
port number for the socket. ina is a host IP address passed as a longword.
Function resolve can be used to convert an IP address into a longword-formatted
variable. 0 can be passed as an ina value if there is no specific IP Address to
listen too.

Example

tcp_Socket *socket;

int port = 5656;

 . . .

tcp_listen(socket, port, 0L, 0, NULL, 0);

See Also

ADM_send_socket (page 46)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 83 of 98
February 20, 2013

sock_gets

Syntax

int sock_gets(sock_type *skType, byte *data, int len);

Parameters

skType Socket that will be used to get string data from.

data Pointer to the string return.

len Specified length for the function to get the string.

Description

This function is used for obtaining a string from the socket. The len parameter
specifies how long the string will be read.

Return Value

The length read from the socket is returned.

Example

sock_type *socket;

char data [512];

int len;

 . . .

len = sock_gets(socket, data, 100);

printf("Get %d\n", len);

See Also

sock_getc (page 84)

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 84 of 98 ProSoft Technology, Inc.
February 20, 2013

sock_getc

Syntax

int sock_getc(sock_type *skType);

Parameters

skType Socket that will be used to get string data from.

Description

This function gets one character at a time from the socket.

Return Value

Character read in is returned.

Example

sock_type *socket;

char in;

 . . .

in = sock_getc(socket);

printf("%c", in);

See Also

sock_gets (page 83)

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 85 of 98
February 20, 2013

sock_dataready

Syntax

int sock_dataready(sock_type *skType);

Parameters

skType Current socket that will be used to check if data is ready to be read.

Description

This function is used check if there is data ready to be read.

Return Value

Number of bytes ready to be read or -1 if error occurs.

Example

int in;

sock_type *socket;

 . . .

in = sock_dataready(socket);

printf("%d", in);

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 86 of 98 ProSoft Technology, Inc.
February 20, 2013

rip

Syntax

Char * rip(char *String);

Parameters

String Array of character string.

Description

This function is used to strip out carriage return and line feed. If there are more
than one carriage return or line feed, the first one will be replace with 0 and the
rest of them will not be defined.

Return Value

Pointer to the new string.

Example

char s;

 . . .

s = sock_dataready("This is a test\n\r");

printf("%s", s);

WATTCP API Functions ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 87 of 98
February 20, 2013

inet_ntoa

Syntax

Char * inet_ntoa(char *String, longword IP);

Parameters

String Array of character string.

IP Decimal representation of IP address.

Description

This function builds ASCII representation of an IP address with a user supply
string from decimal representation of the IP address. The size of the buffer has to
be at least 16 byte.

Return Value

Pointer to the new string.

Example

char buffer[20];

sock_init();

printf("My IP address is %s\n", inet_ntoa(buffer, gethostid()));

ADMNET-MCM ♦ ProLinx Standalone WATTCP API Functions
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 88 of 98 ProSoft Technology, Inc.
February 20, 2013

inet_addr

Syntax

longword * inet_addr(char *String);

Parameters

String Array of character string.

Description

This function converts string dot address to host format.

Return Value

Host IP address format.

Example

char buffer[] = "192.168.0.1";

sock_init();

printf("My IP address is %ld\n", inet_addr(buffer));

DOS 6 XL Reference Manual ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 89 of 98
February 20, 2013

8 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The ProLinx-ADM and ADMNET
modules only support Digital Mars C++ and Borland C/C++ Compiler Version
5.02. References to other compilers should be ignored.

ADMNET-MCM ♦ ProLinx Standalone DOS 6 XL Reference Manual
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 90 of 98 ProSoft Technology, Inc.
February 20, 2013

ADMNET-MCM ♦ ProLinx Standalone Glossary of Terms
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

ProSoft Technology, Inc. Page 91 of 98
February 20, 2013

9 Glossary of Terms

A

API

Application Program Interface

B

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

Glossary of Terms ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

Page 92 of 98 ProSoft Technology, Inc.
 February 20, 2013

D

DLL

Dynamic Linked Library

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

ADMNET-MCM ♦ ProLinx Standalone Glossary of Terms
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

ProSoft Technology, Inc. Page 93 of 98
February 20, 2013

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite

The MVI suite consists of line products for the following platforms:

 Flex I/O
 ControlLogix
 SLC
 PLC
 CompactLogix

MVI46

MVI46 is sold by ProSoft Technology under the MVI46-ADM product name.

MVI56

MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69

MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71

MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94

MVI94 and MVI94AV are the same modules. The MVI94AV is now sold by
ProSoft Technology under the MVI94-ADM product name

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Glossary of Terms ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

Page 94 of 98 ProSoft Technology, Inc.
 February 20, 2013

Quantum (ProTalk)

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

ADMNET-MCM ♦ ProLinx Standalone Support, Service & Warranty
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

ProSoft Technology, Inc. Page 95 of 98
February 20, 2013

10 Support, Service & Warranty

In This Chapter

 Contacting Technical Support ... 95

 Warranty Information ... 96

10.1 Contacting Technical Support

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the serial, Ethernet or fieldbus devices interfaced to the module,

if any.

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following
page.

Support, Service & Warranty ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

Page 96 of 98 ProSoft Technology, Inc.
 February 20, 2013

Internet Web Site: www.prosoft-technology.com/support

E-mail address: support@prosoft-technology.com

Asia Pacific

(location in Malaysia)

Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Asia Pacific

(location in China)

Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com

Languages spoken include: Chinese, English

Europe

(location in Toulouse,
France)

Tel: +33 (0) 5.34.36.87.20,

E-mail: support.EMEA@prosoft-technology.com

Languages spoken include: French, English

Europe

(location in Dubai, UAE)

Tel: +971-4-214-6911,

E-mail: mea@prosoft-technology.com

Languages spoken include: English, Hindi

North America

(location in California)

Tel: +1.661.716.5100,

E-mail: support@prosoft-technology.com

Languages spoken include: English, Spanish

Latin America

(Oficina Regional)

Tel: +1-281-2989109,

E-Mail: latinam@prosoft-technology.com

Languages spoken include: Spanish, English

Latin America

(location in Puebla, Mexico)

Tel: +52-222-3-99-6565,

E-mail: soporte@prosoft-technology.com

Languages spoken include: Spanish

Brasil

(location in Sao Paulo)

Tel: +55-11-5083-3776,

E-mail: brasil@prosoft-technology.com

Languages spoken include: Portuguese, English

10.2 Warranty Information

Complete details regarding ProSoft Technology’s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

http://www.prosoft-technology/warranty
http://www.prosoft-technology/warranty

Index ADMNET-MCM ♦ ProLinx Standalone
Developer's Guide 'C' Programmable Modbus Communication Module with Ethernet

ProSoft Technology, Inc. Page 97 of 98
February 20, 2013

Index

A

ADM API • 39
ADM API Files • 39
ADM_close_sk • 43, 45
ADM_init_socket • 42, 44, 45
ADM_is_sk_open • 51
ADM_NET_GetVersionInfo • 50
ADM_open_sk • 43
ADM_receive_sk • 47, 49
ADM_receive_socket • 46, 48
ADM_release_sockets • 42, 44
ADM_send_sk • 47
ADM_send_socket • 46, 48, 49, 82
ADMNET API Architecture • 39
ADMNET API Functions • 41
ADMNET API Initialize Functions • 42, 55
ADMNET API Miscellaneous Functions • 50
ADMNET API Receive Socket Functions • 48, 80
ADMNET API Release Socket Functions • 44, 71
ADMNET API Send Socket Functions • 46, 74
ADMNET API System Functionality • 56
All ProLinx® Products • 2
API • 91
API Libraries • 37
Application Development Function Library - ADMNET

API • 41

B

Backplane • 91
BIOS • 91
Building an Existing Borland C++ 5.02 ADM Project •

25
Building an Existing Digital Mars C++ 8.49 ADM

Project • 15
Byte • 91

C

Cable Connections • 10
Calling Convention • 37
chk_timeout • 67
CIP • 91
Configuring Borland C++5.02 • 25
Configuring Digital Mars C++ 8.49 • 15
Connection • 91
Connections • 9
Consumer • 91
Contacting Technical Support • 95
Controller • 91
Creating a New Borland C++ 5.02 ADM Project • 27
Creating a New Digital Mars C++ 8.49 ADM Project •

17

D

DB9 to Mini-DIN Adaptor (Cable 09) • 13
Debug and Port 0 Jumpers • 9
Debugging Strategies • 35
Development Tools • 38
DLL • 92
DOS 6 XL Reference Manual • 89
Downloading Files to the Module • 32
Downloading the Sample Program • 15, 25

E

Embedded I/O • 92
ExplicitMsg • 92

G

gethostid • 70

H

Hardware • 35
Header File • 38
HSC • 92

I

Important Installation Instructions • 2
inet_addr • 88
inet_ntoa • 87
Input Image • 92
Introduction • 7
ip_timer_expired • 65
ip_timer_init • 64

J

Jumper Locations and Settings • 9

L

Library • 92
LIMITED WARRANTY • 96
Linked Library • 92
Local I/O • 92
Long • 92

M

Module • 92
Multithreading Considerations • 38
Mutex • 93
MVI Suite • 93
MVI46 • 93
MVI56 • 93
MVI69 • 93
MVI71 • 93
MVI94 • 93

O

Operating System • 7
Originator • 93
Output Image • 93

ADMNET-MCM ♦ ProLinx Standalone Index
'C' Programmable Modbus Communication Module with Ethernet Developer's Guide

Page 98 of 98 ProSoft Technology, Inc.
February 20, 2013

P

Package Contents • 9
Pinouts • 2, 10, 13
Preparing the ProLinx-ADMNET Module • 9
Producer • 93
Programming the Module • 35
ProLinx-ADMNET Communication Ports • 9
PTO • 93
PTQ Suite • 93

R

resolve • 57, 58, 59, 60, 61
rip • 86
RS-232 • 10

Modem Connection • 10
Null Modem Connection (Hardware Handshaking)

• 11
Null Modem Connection (No Hardware

Handshaking) • 11
RS-232 Configuration/Debug Port • 12
RS-422 • 13
RS-485 • 12
RS-485 and RS-422 Tip • 13
RS-485 Programming Note • 35

S

Sample Code • 38
Scanner • 94
set_timeout • 66
Setting Up Your Compiler • 15
Setting Up Your Development Environment • 15
Side-connect • 94
sock_abort • 72, 73
sock_close • 72, 73
sock_dataready • 85
sock_established • 63
sock_exit • 55, 71
sock_fastread • 80, 81
sock_fastwrite • 74, 75
sock_flush • 76, 77
sock_flushnext • 76, 77
sock_getc • 83, 84
sock_gets • 83, 84
sock_init • 55, 71
sock_mode • 62
sock_putc • 78, 79
sock_puts • 78, 79
sock_read • 80, 81
sock_write • 74, 75
sockerr • 68
sockstate • 69
Software • 36
Support, Service & Warranty • 95

T

Target • 94
tcp_listen • 82
tcp_open • 57

tcp_open_fast • 58
tcp_tick • 56
Theory of Operation • 39
Thread • 94

U

udp_open • 59
udp_open_fast • 60
Understanding the ProLinx-ADMNET API • 37

W

WATTCP API Functions • 53
Word • 94

Y

Your Feedback Please • 3

