
ControlLogix
Multi-Vendor
Interface Module
DF1 API
1756-MVI

User Manual

Important User Information Because of the variety of uses for the products described in this
publication, those responsible for the application and use of this
control equipment must satisfy themselves that all necessary steps
have been taken to assure that each application and use meets all
performance and safety requirements, including any applicable laws,
regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown
in this guide are intended solely for purposes of example. Since there
are many variables and requirements associated with any particular
installation, Allen-Bradley does not assume responsibility or liability
(to include intellectual property liability) for actual use based upon
the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the
Application, Installation and Maintenance of Solid-State Control
(available from your local Allen-Bradley office), describes some
important differences between solid-state equipment and
electromechanical devices that should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole
or part, without written permission of Rockwell Automation, is
prohibited.

Throughout this manual we use notes to make you aware of safety
considerations:

Attention statements help you to:

• identify a hazard

• avoid a hazard

• recognize the consequences

Allen-Bradley and ControlLogix are trademarks of Rockwell Automation.

Borland C++ is a trademark of Borland Corporation.

Microsoft C++, Windows 95/98, and Windows NT are trademarks of Microsoft Corporation.

ATTENTION

!
Identifies information about practices or
circumstances that can lead to personal injury or
death, property damage or economic loss

IMPORTANT Identifies information that is critical for successful
application and understanding of the product.

European Communities (EC)
Directive Compliance

If this product has the CE mark it is approved for installation within
the European Union and EEA regions. It has been designed and
tested to meet the following directives.

EMC Directive

This product is tested to meet the Council Directive 89/336/EC
Electromagnetic Compatibility (EMC) by applying the following
standards, in whole or in part, documented in a technical
construction file:

• EN 50081-2 EMC — Generic Emission Standard, Part 2 —
Industrial Environment

• EN 50082-2 EMC — Generic Immunity Standard, Part 2 —
Industrial Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low
Voltage, by applying the safety requirements of EN 61131-2
Programmable Controllers, Part 2 - Equipment Requirements and
Tests. For specific information required by EN 61131-2, see the
appropriate sections in this publication, as well as the Allen-Bradley
publication Industrial Automation Wiring and Grounding Guidelines
For Noise Immunity, publication 1770-4.1.

This equipment is classified as open equipment and must be
mounted in an enclosure during operation to provide safety
protection.

Preface

About This User Manual

Introduction This user manual provides information needed to develop application
programs for the 1756-MVI ControlLogix Multi-Vendor Interface
Module using the DF1 API (Application Programming Interface).

This user manual describes the available software DF1 API libraries
and tools, programming information, and example code.

Audience This user manual is intended for control engineers and technicians
who are installing, programming, and maintaining a control system
that includes a 1756-MVI module.

We assume that you:

• are familiar with software development in the 16-bit DOS
environment using the C programming language.

• are familiar with Allen-Bradley programmable controllers and
the ControlLogix platform.

Contents This user manual contains the following chapters:

2

1

3

DF1 Half-Duplex
Master API

DF1 Full-Duplex API

DF1 Half-Duplex
Slave API
1 Publication 1756-UM008A-EN-P - June 2000

 P-2 About This User Manual
References For additional information refer to the following publications:

• ControlLogix 1756-MVI Multi-Vendor Interface Module
Installation Instructions, publication number1756-1N001A-US-P

• ControlLogix 1756-MVI Multi-Vendor Interface Module
Programming Reference Manual, publication
number1756-RM004A-EN-P

• General Software Embedded DOS 6-XL Developer’s Guide 1.2

• Introduction to ControlLogix Module Development, CID#X1557

• DF1 Protocol and Command Set, publication number 1770-6.5.16

Rockwell Automation
Support

Rockwell Automation offers support services worldwide, with over 75
sales/support offices, 512 authorized distributors, and 260 authorized
systems integrators located throughout the United States alone, plus
Rockwell Automation representatives in every major country in the
world.

Local Product Support

Contact your local Rockwell Automation representative for:

• sales and order support

• product technical training

• warranty support

• support service agreements

Technical Product Assistance

If you need to contact Rockwell Automation for technical assistance,
call your local Rockwell Automation representative, or call Rockwell
directly at: 1 440 646-6800.

For presales support, call 1 440 646-3NET.

You can obtain technical assistance online from the following
Rockwell Automation WEB sites:

• www.ab.com/mem/technotes/kbhome.html (knowledge base)

• www.ab.com/networks/eds (electronic data sheets)

More
Publication 1756-UM008A-EN-P - June 2000

About This User Manual P-3
Your Questions or Comments about This Manual

If you find a problem with this manual, please notify us of it on the
enclosed Publication Problem Report (at the back of this manual).

If you have any suggestions about how we can make this manual
more useful to you, please contact us at the following address:

Rockwell Automation, Allen-Bradley Company, Inc.
Control and Information Group
Technical Communication
1 Allen-Bradley Drive
Mayfield Heights, OH 44124-6118
Publication 1756-UM008A-EN-P - June 2000

 P-4 About This User Manual
Publication 1756-UM008A-EN-P - June 2000

Table of Contents

Chapter 1
DF1 Full-Duplex API What This Chapter Contains . 1-1

DF1 Full-Duplex API Functions . 1-1
Initialization Functions . 1-2
Communications . 1-7

Chapter 2
DF1 Half-Duplex Master API What This Chapter Contains . 2-1

DF1 Half-Duplex Master API Functions 2-1
Initialization Functions . 2-2
Communications . 2-9

Chapter 3
DF1 Half-Duplex Slave API What This Chapter Contains . 3-1

DF1 Half-Duplex Slave API Functions 3-1
Initialization Functions . 3-2
Communications . 3-6

Index
i Publication 1756-UM008A-EN-P - June 2000

Table of Contents ii
Publication 1756-UM008A-EN-P - June 2000

Chapter 1

DF1 Full-Duplex API

The DF1 Full-Duplex (FD) API is one component of the 1756-MVI API
Suite. The DF1 FD API allows applications to communicate, via the
serial ports, with devices that use the Full-Duplex DF1 protocol. The
DF1 FD API functions implement the DF1 FD protocol to the Data-link
Layer. Please refer to Allen-Bradley publication number 1770-6.5.16,
DF1 Protocol and Command Set.

The DF1 FD API provides a common applications interface for all of the
Rockwell Automation and third party modules in the MVI family. This
common interface allows application portability between modules in
the family.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

DF1 Full-Duplex API
Functions

This section provides detailed programming information for each of the
API library functions. The calling convention for each API function is
shown in C format.

The API library routines are categorized according to functionality as
shown in table 1.A.

More

For information about See page
DF1 Full-Duplex API Functions 1-1

Initialization Functions 1-2

Communications 1-7

Table 1.A DF1 Full-Duplex API Functions

Function Category Function Name Description

Initialization MVIdf1_FDOpenPort Initialize access to a DF1 serial port.

MVIdf1_FDClosePort Terminate access to a DF1 serial port.

Communications MVIdf1_FDGetPkt Fetch a received packet and/or received packet
status

MVIdf1_FDPutPkt Place a packet for transmission

MVIdf1_FDGetPktStat Fetch the transmission status of a command
packet

MVIdf1_FDGetDiagnostics Fetch the value of one of the diagnostic counters

Miscellaneous MVIdf1_FDGetVersionInfo Get the DF1 FD API version information
1 Publication 1756-UM008A-EN-P - June 2000

1-2 DF1 Full-Duplex API
Initialization Functions

MVIdf1_FDOpenPort

Syntax:

int MVIdf1_FDOpenPort (FDCFG *DF1Config);

Parameters:

DF1Config Pointer to a structure of type FDCFG. The FDCFG
structure is defined below in the Description section.

Description:

MVIdf1_FDOpenPort acquires access to a communications port,
configures a DF1 Full-Duplex communications program for that port
and then begins execution of that communications program as a
background task. This function must be called before any of the other
API functions can be used.

The FDCFG structure is defined below

typedef struct tagFDCFG
{
BYTE Baud; // Desired baud rate
BYTE Parity; // Desired parity
BYTE Stop; // Desired stop bits
BYTE DupPacket; // Duplicate packet detection enable/disable
BYTE ErrorDet; // CRC or BCC error checking selection
BYTE Station; // Station address. Range: 0-254; 255 = broadcast
BYTE Max_NAKS; // Number of times a single message will be

// transmitted in response to the reception of a
// NAK, before being marked as undeliverable.

BYTE Max_ENQS; // Number of times a single message will be
// transmitted in response to a timeout, before
// being marked as undeliverable.

BYTE Handshake; // Hardware handshake control:
// HSHAKE_NONE = none
// HSHAKE_NCC = half-dup, w/o continuous
// carrier
// HSHAKE_CC = half-dup, with continuous
// carrier

WORD RTSSend; // The RTS send delay in increments of 1 mS
WORD RTSOff; // The RTS off delay in increments of 1 mS
WORD ACKTimeout; // The amount of time the unit will wait for an

// acknowledgment (DLE-ACK, DLE-NAK to a
// transmitted message.
// Units are in increments of 1 mS.

BYTE MsgApplTimeout; // The amount of time the unit will wait for a
// reply message in response to an enquiry.
// Units are in increments of 1 second.

int ComPort; // Set to COM1 or COM2 or COM3
} FDCFG;
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-3
Baud is the desired baud rate. The allowable values for Baud are
shown in table 1.B.

Valid values for Parity are PARITY_NONE, PARITY_ODD,
PARITY_EVEN, PARITY_MARK, and PARITY_SPACE.

The number of stop bits is set by Stop. Valid values for Stop are
STOPBITS1 and STOPBITS2.

DupPacket determines if duplicate packet detection is enabled or
disabled. Valid values for DupPacket are DUP_PACKET_ENA and
DUP_PACKET_DIS. When enabled, a counter indicating the number of
duplicate packets received is maintained. See
MVIdf1_FDGetDiagnostics.

ErrorDet determines the type of error detection. Valid values for
ErrorDet are CRC_ERROR_CHK (cyclic redundancy check) and
BCC_ERROR_CHK (block check character). A counter indicating the
number of packets received with an invalid error check value is
maintained. See MVIdf1_FDGetDiagnostics.

Station sets the station number. The valid range is 0-254. Station
number 255 should not be used as it is reserved as a broadcast message
designation.

Max_NAKS sets the number of NAKs allowed per command. The valid
range is 1-255. Once this limit is reached, the status of the message is
set to “failed”. See MVIdf1_FDGetPktStat.

Max_ENQS sets the number of ENQs that will be transmitted when an
ACK timeout occurs. The range is 1-255. Once this limit is reached, the
status of the message is set to “failed”. See MVIdf1_FDGetPktStat.

MVIdf1_FDOpenPort

Table 1.B - Valid Baud Rates

Baud Rate Value
BAUD_110 0
BAUD_150 1
BAUD_300 2
BAUD_600 3
BAUD_1200 4
BAUD_2400 5
BAUD_4800 6
BAUD_9600 7
BAUD_19200 8
BAUD_28800 9
BAUD_38400 10
BAUD_57600 11
BAUD_115200 12
Publication 1756-UM008A-EN-P - June 2000

1-4 DF1 Full-Duplex API
Handshake determines whether or not hardware handshaking is
enabled and if enabled, the type of handshaking used. Valid values are:

HSHAKE_NONE = none
HSHAKE_NCC = half-dup,w/o continuous carrier

RTSSend is the time delay of the transmission of a packet after the RTS
output line is activated. This delay only applies when hardware
handshaking is active. Units are in increments of 1 mS with a range of
0 - 65535.

RTSOff is the time delay of the deactivation of the RTS output line once
a packet has completed transmission. This delay only applies when
hardware handshaking is active. Units are in increments of 1 mS with a
range of 0 - 65535.

ACKTimeout is the amount of time the unit will wait for an
acknowledgment to a transmitted message or an enquiry. The
appropriate acknowledgment to a command message is the DLE-ACK or
DLE-NAK sequence. Units are in increments of 1 mS with a range of 0 -
65535.

MsgApplTimeout is the amount of time the unit will wait for a reply
message in response to a command. Once the unit successfully issues a
command to the peer, the peer must respond with a reply message.
This timeout allows sufficient time for the peer to interpret the
command, produce a reply, and then transmit that reply. Units are in
increments of 1 second with a range of 0 - 255.

ComPort specifies which port is to be opened. The valid values for the
1756-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).

Note: If the console is enabled or the Setup jumper is installed, the
baud rate for COM1 is set as configured in BIOS Setup and cannot be
changed by MVIdf1_FDOpenPort. MVIdf1_FDClosePort will return
MVI_SUCCESS, but the baud rate will not be affected. The console
should be disabled in BIOS Setup if COM1 is to be accessed with the
DF1 FD API.

MVIdf1_FDOpenPort

IMPORTANT Once the DF1 port has been opened,
MVIdf1_FDClosePort must always be called before
exiting the application.
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-5
Return Value:

MVI_SUCCESS DF1 port was opened successfully

MVI_ERR_REOPEN DF1 port is already open

MVI_ERR_NODEVICE UART not found on port

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_OS Error occurred in DOS 6-XL operating system

Note: MVI_ERR_NODEVICE will be returned if the port is not
supported by the module.

Example:

FDSCFG Port1Cfg;

if (MVIdf1_FDOpenPort(&Port1Cfg) != MVI_SUCCESS) {
 printf(“Open failed!\n”);
} else {
 printf(“Open succeeded\n”);
}

See Also:

MVIdf1_FDClosePort

MVIdf1_FDOpenPort
Publication 1756-UM008A-EN-P - June 2000

1-6 DF1 Full-Duplex API
MVIdf1_FDClosePort

Syntax:

int MVIdf1_FDClosePort (BYTE comport);

Parameters:

comport DF1 port to close

Description:

MVIdf1_FDClosePort is used by the application to release control of the
designated communications port. The application must have previously
opened the comport with the MVIdf1_FDOpenPort API.

Return Value:

MVI_SUCCESS DF1 port was closed successfully

MVI_ERR_NOACCESS DF1 has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

MVIdf1_FDClosePort(COM1);

See Also:

MVIdf1_FDOpenPort

IMPORTANT Once the DF1 port has been opened, this function
must always be called before exiting the application.
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-7
Communications

MVIdf1_FDGetPkt

Syntax:

int MVIdf1_FDGetPkt (BYTE comport, BYTE *DF1_Pkt, WORD
*length, RSPRCV *DF1_Stat);

Parameters:

comport DF1 port from which to fetch a packet/status.

DF1_Pkt pointer to the array into which the packet is to be stored.

length pointer to the variable into which the length of the packet
is to be stored.

DF1_Stat pointer to a structure of type RSPRCV. This is the pointer
to the array into which the response packet status will be
stored.

Description:

MVIdf1_FDGetPkt determines if a response packet/status is available
from the designated port. The received packet may be a response to a
command or it may be a peer-initiated packet.

The status of the response packet, returned in DF1_Stat, is critical to the
application for proper processing of the response packet:

• If the RespStatus field of DF1_Stat is equal to RESP_VALID, then
the application layer packet in DF1_Pkt is valid and the length of
the packet is contained in length. Also, the Src, Cmd, and TNS
fields of DF1_Stat contain the source, command, and transaction
number for the received packet.

• If the RespStatus field of DF1_Stat is equal to RESP_TIMEOUT,
the application layer packet in DF1_Pkt, as well as the length
field, is invalid. In this case, the Src, Cmd, and TNS fields of
DF1_Stat contain the source, command, and transaction number
of a command which has not received a reply packet within the
time limit determined by the parameter MsgApplTimeout. See
MVIdf1_FDOpenPort.

Each call to MVIdf1_FDGetPkt returns a single response packet/status.
To retrieve all current response packet/status information the
application should continue to call MVIdf1_FDGetPkt until the return
value is MVI_ERR_NODATA. Once the response packet/status has been
retrieved, it is longer available to the application; therefore, the
application must process each packet/status immediately after it is
retrieved.
Publication 1756-UM008A-EN-P - June 2000

1-8 DF1 Full-Duplex API
DF1_Pkt is a pointer to an array where the application layer data will
be stored. Only the application layer data will be stored to this array,
not the entire DF1 packet.

length is a pointer where the length of the returned packet will be
stored.

DF1_Stat is a pointer to a structure of type RSPRCV. The RSPRCV
structure is defined below:

typedef struct tagRSPRCV

{
BYTE Src; // Source address of received response packet
BYTE Cmd; // Command value of received response packet
WORD TNS; // TNS count for response packet
BYTE RespStatus; // Receive status of the response packet

}RSPRCV;

Src The source node value of the reply packet. Note: this is the
destination node value in the associated command packet.

Cmd The command code of the reply packet.

TNS The transaction number of the reply packet

RespStatus returned will be one of the following:

• RESP_VALID = The data-link layer packet in DF1_Pkt is a valid
packet and the length of the packet is contained in *length. Also,
the Src, Cmd, and TNS fields of DF1_Stat contain the source,
command and transaction number for the response packet.

• RESP_TIMEOUT = The data-link layer packet in DF1_Pkt and the
length are invalid. The Src, Cmd, and TNS fields of DF1_Stat are
associated with a command packet which has not received a
reply packet within the time limit determined by the parameter
MsgApplTimeout. See MVIdf1_FDOpenPort.

Return Value:

MVI_SUCCESS Packet/status retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NODATA No packet/status available

MVIdf1_FDGetPkt
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-9
Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
RSPRCV DF1_Stat;
WORD length;

if (MVIdf1_FDGetPkt(COM1,DF1_Pkt,&length,&DF1_Stat) ==
MVI_SUCCESS) {

 printf (“Received packet/status available. \n”);
}

See Also:

MVIdf1_FDPutPkt

MVIdf1_FDGetPkt
Publication 1756-UM008A-EN-P - June 2000

1-10 DF1 Full-Duplex API
MVIdf1_FDPutPkt

Syntax:

int MVIdf1_FDPutPkt (BYTE comport, BYTE *DF1_Pkt, WORD
*length);

Parameters:

comport DF1 port to which to send a packet.

DF1_Pkt pointer to array from which the packet is to be retrieved.

length pointer to variable from which the length of the packet
will be retrieved.

Description:

MVIdf1_FDPutPkt takes the application layer data from the array
pointed to by DF1_Pkt and places it into the source buffer for
transmission. The length of the data is the variable pointed to by
length. The data passed to this function is only the application layer
data, not the entire DF1 packet.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set.

DF1_Pkt is a pointer to an array from which the application layer data
will be retrieved. The application should store only the application
layer data, not the entire DF1 packet.

length is a pointer to the variable that contains the length of the packet
to be stored for transmission.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
WORD length;

if (MVIdf1_FDPutPkt(COM1, DF1_Pkt,&length) == MVI_SUCCESS) {
printf (“Packet stored for transmission. \n”);

}

See Also:

MVIdf1_FDGetPkt

MVIdf1_FDGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-11
MVIdf1_FDGetPktStat

Syntax:

int MVIdf1_FDGetPktStat (BYTE comport, SRCXMT *DF1_Stat);

Parameters:

comport DF1 port on which to request packet status.

DF1_Stat pointer to a structure of type SRCXMT. The SRCXMT
structure is defined below in the Description.

Description:

This function returns the status of a packet that has been placed into the
source buffer, by the MVIdf1_FDPutPkt function, for transmission. A
transmit status queue is maintained to provide the application with
information for each packet placed in the source buffer for
transmission.

The transmit status queue contains the status of each packet which has
terminated transmission (pass or fail) as well as the status of a packet
which may be in the process of being transmitted. The status of packets
that have not yet begun transmission will not be in the queue.

Each call to this function returns the status of one packet. Once the
status of a packet is reported, that packet’s status is removed from the
queue and the next query will return the status of the next packet in the
status queue.

The last packet status in the queue may be the status of a packet in the
process of being transmitted. This packet’s status will be returned but it
will not be removed from the queue until the query is made when the
packet’s transmission has been terminated.

The SRCXMT structure is defined below:

typedef struct tagSRCXMT
{

BYTE Src; // Source node of application layer data
BYTE Cmd; // Command code of application layer data
WORD TNS; // TNS number for application packet
BYTE XmitStatus; // Transmit status of the packet

}SRCXMT;

Src The source node value found in the application layer data
of the packet.

Cmd The command code found in the application layer data of
the packet.

TNS The transaction number found in the application layer data
of the packet.
Publication 1756-UM008A-EN-P - June 2000

1-12 DF1 Full-Duplex API
XmitStatus The status of the packet, where:

MVIDF1_XMITTING = packet currently being transmitted

MVIDF1_SUCCESS = packet has been successfully
transmitted

MVIDF1_FAILED = packet transmission failed

Note: The Src, Cmd, and TNS values are to be used by the application
to identify the packet to which the status information, XmitStatus,
pertains.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set, for a detailed explanation of the Src, Cmd,
and TNS elements of the application layer data.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NOSTAT No packet status available

Example:

SRCXMTDF1_Stat;

if (MVIdf1_FDGetPktStat(COM1,&DF1_Stat) == MVI_SUCCESS) {
 printf (“Packet transmission status available. \n”);
}

See Also:

MVIdf1_FDPutPkt

MVIdf1_FDGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-13
MVIdf1_FDGetDiagnostics

Syntax:

int MVIdf1_FDGetDiagnostics (BYTE comport, WORD *DF1_Diag,
BYTE DF1_DiagNum,BYTE reset);

Parameters:

comport DF1 port from which to fetch a diagnostic counter
value

DF1_Diag pointer to the variable in which to store the counter
value

DF1_DiagNum number of diagnostic counter to retrieve

reset reset/no-reset flag for diagnostic counter

Description:

MVIdf1_FDGetDiagnostics retrieves the value of the designated
diagnostic counter. Depending on the value of reset, the counter may or
may not be reset to a value of zero.

The diagnostic counters may be used by the application to track and
analyze communications problems, monitor packet flow, and to allow
link optimization.

DF1_Diag is a pointer to a variable in which to store the diagnostic
counter value. These counters will roll over to a value of zero if allowed
to increment without monitoring and control.

DF1_DiagNum is the number of the desired diagnostic counter value,
where:

PACKETS_RCVD = 0x00 = Number of valid packets received from
the peer units.

BAD_CRC_BCC = 0x03 = Number of packets received with invalid
error checks.

DUPS_RCVD = 0x04 = Number of duplicate packets received. This
counter is only active if duplicate packet detection is enabled.

PACKETS_XMITTED = 0x05 = Total number of packets transmitted.
This value includes message re-transmissions.

SINK_FULL = 0x06 = Number of received packets which have been
rejected because the sink (receive) buffer is full. This number
indicates that the application may not be retrieving received packets
in a timely manner.
Publication 1756-UM008A-EN-P - June 2000

1-14 DF1 Full-Duplex API
SOURCE_FULL = 0x07 = Number of transmit packets which have
been rejected because the source (transmit) buffer is full. This
number may indicate a problem with modem handshaking.

MESSAGE_RETRIES = 0x08 = Number of packets which have been
re-transmitted.

reset determines if the diagnostic counter is or is not reset to a value of
zero. A value of non-zero will reset the counter.

Return Value:

MVI_SUCCESS Packet retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

WORDDF1_Diag;

if (MVIdf1_FDGetDiagnostics(COM1,&DF1_Diag,PACKETS_RCVD,0x00) ==
MVI_SUCCESS) {
 printf (“Total number of packets received is %u,\n”, DF1_Diag);
// The counter has not been reset
}

MVIdf1_FDGetDiagnostics
Publication 1756-UM008A-EN-P - June 2000

DF1 Full-Duplex API 1-15
MVIdf1_Get VersionInfo

Syntax:

int MVIdf1_FDGetVersionInfo(MVIDF1VERSIONINFO *verinfo);

Parameters:

verinfo pointer to structure of type MVIDF1VERSIONINFO

Description:

MVIdf1_FDGetVersionInfo retrieves the current version of the API. The
version information is returned in the structure verinfo.

The MVIDF1VERSIONINFO structure is defined as follows:

typedef struct tagMVIDF1VERSIONINFO
{
WORDAPISeries;/* API series */
WORDAPIRevision;/* API revision */
} MVIDF1VERSIONINFO;

Return Value:

MVI_SUCCESS The version information was read successfully.

Example:

MVIDF1VERSIONINFO verinfo;

/* print version of API library */
MVIdf1_FDGetVersionInfo(&verinfo);
printf(“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
Publication 1756-UM008A-EN-P - June 2000

1-16 DF1 Full-Duplex API
Publication 1756-UM008A-EN-P - June 2000

Chapter 2

DF1 Half-Duplex Master API

The DF1 Half-Duplex Master (HDM) API is one component of the
1756-MVI API Suite. The DF1 HDM API allows applications to
communicate, via the serial ports, with devices that use the Half-Duplex
Slave DF1 protocol. The DF1 HDM API functions implement the DF1
HDM protocol to the Data-link Layer. Please refer to the Allen-Bradley
publication number 1770-6.5.16, titled DF1 Protocol and Command Set.

The DF1 HDM API provides a common applications interface for all of
the Rockwell Automation and third party modules in the MVI family.
This common interface allows application portability between modules
in the family.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

DF1 Half-Duplex Master
API Functions

This section provides detailed programming information for each of the
API library functions. The calling convention for each API function is
shown in C format.

The API library routines are categorized according to functionality as
shown in table 2.A.

More

For information about See page
DF1 Half-Duplex Master API Functions 2-1

Initialization Functions 2-2

Communications 2-9

Table 2.A DF1 Half-Duplex Master API Functions

Function Category Function Name Description

Initialization MVIdf1_HDMOpenPort Initialize access to a DF1 serial port.

MVIdf1_HDMClosePort Terminate access to a DF1 serial port.

Communications MVIdf1_HDMGetRespPkt Fetch a response packet and/or response packet
status

MVIdf1_HDMPutPkt Place a packet for transmission

MVIdf1_HDMGetPktStat Fetch the status of a transmitted packet

MVIdf1_HDMGetDiagnostics Fetch the value of one of the diagnostic counters

Miscellaneous MVIdf1_HDMGetVersionInfo Get the DF1 HDM API version information
1 Publication 1756-UM008A-EN-P - June 2000

2-2 DF1 Half-Duplex Master API
Initialization Functions

MVIdf1_HDMOpenPort

Syntax:

int MVIdf1_HDMOpenPort (HDMCFG *DF1Config);

Parameters:

DF1Config Pointer to a structure of type HDMCFG. The HDMCFG
structure is defined below in the Description section.

Description:

MVIdf1_HDMOpenPort acquires access to a communications port,
configures a DF1 Half-Duplex Master communications program for that
port and then begins execution of that communications program as a
background task. This function must be called before any of the other
API functions can be used.
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-3
The HDMCFG structure is defined below

typedef struct tagHDMCFG
{
BYTE Baud; // Desired baud rate
BYTE Parity; // Desired parity
BYTE Stop; // Desired stop bits
BYTE DupPacket; // Duplicate packet detection enable/disable
BYTE ErrorDet; // CRC or BCC error checking selection
BYTE Station; // Station address. Range: 0-254; 255 = broadcast
BYTE MsgRetries; // Number of times a single message will be

// transmitted to a slave before being marked as
// undeliverable.

BYTE Handshake; // Hardware handshake control:
// HSHAKE_NONE =none
// HSHAKE_NCC =half-dup, w/o continuous
// carrier
// HSHAKE_CC =half-dup, with continuous
// carrier

WORD RTSSend; // The RTS send delay in increments of 1 mS
WORD RTSOff; // The RTS off delay in increments of 1 mS
WORD ReplyMsgWait; // The amount of time the master will wait

// after receiving an ACK (to a master-initiated
// message) before polling the slave for a reply.
// Units are in increments of 1 mS. This is
// applicable only for the message-based polling
// modes

WORD ACKTimeout; // The amount of time the master will wait for an
// acknowledgment (DLE-ACK, DLE-EOT or a
// packet) to a transmitted message or an
// enquiry. Units are in increments of 1 mS.

BYTE MsgApplTimeout; // The amount of time the master will wait for a
// reply message in response to an enquiry.
// Units are in increments of 1 second.

BYTE PollingMode; // The polling method to use:
// MSG_NO_SLAVE_ALLD = Message based,
// no slave initiated messages allowed.
// MSG_SLAVE_ALLD = Message based,
// slave initiated messages are allowed.
// STD_SINGLE = Standard, single response
// message during a polling cycle.
// STD_MULTIPLE = Standard, multiple
// responses during a polling cycle.

BYTE Norm_Poll_Low_Addr; // The Normal Polling Range Low Address.
BYTE Norm_Poll_High_Addr; // The Normal Polling Range High Address.
BYTE Norm_Poll_Group_Size;// The number of active nodes in the normal

// poll list to be polled during a single pass of
// the normal polling cycle.

BYTE Priority_Poll_Low_Addr;// The Priority Polling Range Low Address.
BYTE Priority_Poll_High_Addr;// The Priority Polling Range High Address.
int ComPort; // Set to COM1 or COM2 or COM3
} HDMCFG;

MVIdf1_HDMOpenPort
Publication 1756-UM008A-EN-P - June 2000

2-4 DF1 Half-Duplex Master API
Baud is the desired baud rate. The allowable values for Baud are
shown in table 2.B.

Valid values for Parity are PARITY_NONE, PARITY_ODD,
PARITY_EVEN, PARITY_MARK, and PARITY_SPACE.

The number of stop bits is set by Stop. Valid values for Stop are
STOPBITS1 and STOPBITS2.

DupPacket determines if duplicate packet detection is enabled or
disabled. Valid values for DupPacket are DUP_PACKET_ENA and
DUP_PACKET_DIS. When enabled, a counter indicating the number of
duplicate packets received is maintained. See
MVIdf1_HDSGetDiagnostics.

ErrorDet determines the type of error detection. Valid values for
ErrorDet are CRC_ERROR_CHK (cyclic redundancy check) and
BCC_ERROR_CHK (block check character). A counter indicating the
number of packets received with an invalid error check value is
maintained. See MVIdf1_HDSGetDiagnostics.

Station sets the station number. The valid range is 0-254. Station
number 255 should not be used as it is reserved as a broadcast message
designation.

MsgRetries sets the number of times a single message will be transmitted
in response to a poll from the master. The range is 1-255. Once this
limit is reached, the status of the message is set to “failed”. See
MVIdf1_HDSGetPktStat.

MVIdf1_HDMOpenPort

Table 2.B - Valid Baud Rates

Baud Rate Value
BAUD_110 0
BAUD_150 1
BAUD_300 2
BAUD_600 3
BAUD_1200 4
BAUD_2400 5
BAUD_4800 6
BAUD_9600 7
BAUD_19200 8
BAUD_28800 9
BAUD_38400 10
BAUD_57600 11
BAUD_115200 12
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-5
Handshake determines whether or not hardware handshaking is
enabled and if enabled, the type of handshaking used. Valid values are:

HSHAKE_NONE = none
HSHAKE_NCC = half-dup,w/o continuous carrier
HSHAKE_CC = half-dup, with continuous carrier

RTSend is the time delay of the transmission of a packet after the RTS
output line is activated. This delay only applies when hardware
handshaking is active. Units are in increments of 1 mS with a range of
0 - 65535.

RTSOff is the time delay of the deactivation of the RTS output line once
a packet has completed transmission. This delay only applies when
hardware handshaking is active. Units are in increments of 1 mS with a
range of 0 - 65535.

ReplyMsgWait is the amount of time the master will wait, after receiving
an ACK (to a master-initiated message), before polling the slave for a
reply. This parameter is only applicable when a message-based polling
method is used. Units are in increments of 1 mS with a range of
0 - 65535.

ACKTimeout is the amount of time the master will wait for an
acknowledgment to a transmitted message or an enquiry. The
appropriate acknowledgment to a command message is the DLE-ACK
sequence. The appropriate acknowledgment to an enquiry (DLE-ENQ
sequence) is either a response packet or the DLE-EOT sequence. Units
are in increments of 1 mS with a range of 0 - 65535.

MsgApplTimeout is the amount of time the master will wait for a reply
message in response to a command from the master. Once the master
successfully issues a command to a slave, the slave must respond with a
reply message. This timeout allows sufficient time for the slave to
interpret the command, produce a reply and then transmit that reply
when the master queries the slave. Units are in increments of 1 second
with a range of 0 - 255.

PollingMode is the polling method to use:

STD_SINGL = Standard, single response message during a polling
cycle.

STD_MULTIPLE = Standard, multiple responses during a polling
cycle.

MSG_NO_SLAVE_ALLD = Message based, no slave initiated
messages allowed.

MSG_SLAVE_ALLD = Message based, slave initiated messages are
allowed.

MVIdf1_HDMOpenPort
Publication 1756-UM008A-EN-P - June 2000

2-6 DF1 Half-Duplex Master API
Norm_Poll_Low_Addr is the numerically lowest slave station number at
which to begin the normal polling cycle. This value, along with the
Norm_Poll_High_Addr parameter, determines the address range of the
slave stations which will be included in the normal polling cycle.

Norm_Poll_High_Addr is the numerically highest slave station number
at which to terminate the normal polling cycle. This value, along with
the Norm_Poll_Low_Addr parameter, determines the address range of
the slave stations which will be included in the normal polling cycle.

Norm_Poll_Group_Size is the number of stations to be polled during a
single pass of the normal polling cycle.

Priority_Poll_Low_Addr is the numerically lowest slave station number
at which to begin the priority polling cycle. This value, along with the
Priority_Poll_High_Addr parameter, determines the address range of
slave stations which will be included in the priority polling cycle.

Priority_Poll_High_Addr is the numerically highest slave station number
at which to terminate the priority polling cycle. This value, along with
the Priority_Poll_Low_Addr parameter, determines the address range of
slave stations which will be included in the priority polling cycle.

ComPort specifies which port is to be opened. The valid values for the
1756-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).

Note: If the console is enabled or the Setup jumper is installed, the
baud rate for COM1 is set as configured in BIOS Setup and cannot be
changed by MVIdf1_HDMOpenPort. MVIdf1_HDMClosePort will return
MVI_SUCCESS, but the baud rate will not be affected. The console
should be disabled in BIOS Setup if COM1 is to be accessed with the
DF1 HDM API.

Return Value:

MVI_SUCCESS DF1 port was opened successfully

MVI_ERR_REOPEN DF1 port is already open

MVI_ERR_NODEVICE UART not found on port

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_OS Error occurred in DOS 6-XL operating system

Note: MVI_ERR_NODEVICE will be returned if the port is not
supported by the module.

MVIdf1_HDMOpenPort

IMPORTANT Once the DF1 port has been opened,
MVIdf1_HDSClosePort should always be called before
exiting the application.
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-7
Example:

HDSCFG Port1Cfg;

if (MVIdf1_HDMOpenPort(&Port1Cfg) != MVI_SUCCESS) {
 printf(“Open failed!\n”);
} else {
 printf(“Open succeeded\n”);
}

See Also:

MVIdf1_HDMClosePort

MVIdf1_HDMOpenPort
Publication 1756-UM008A-EN-P - June 2000

2-8 DF1 Half-Duplex Master API
MVIdf1_HDMClosePort

Syntax:

int MVIdf1_HDMClosePort (BYTE comport);

Parameters:

comport DF1 port to close

Description:

MVIdf1_HDMClosePort is used by the application to release control of
the designated communications port. The application must have
previously opened the comport with the MVIdf1_HDMOpenPort API.

Return Value:

MVI_SUCCESS DF1 port was closed successfully

MVI_ERR_NOACCESS DF1 has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

MVIdf1_HDMClosePort(COM1);

See Also:

MVIdf1_HDMOpenPort

IMPORTANT Once the DF1 port has been opened, this function
should always be called before exiting the
application.
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-9
Communications

MVIdf1_HDMGetRespPkt

Syntax:

int MVIdf1_HDMGetRespPkt (BYTE comport, BYTE *DF1_Pkt,
WORD *length, RSPRCV *DF1_Stat);

Parameters:

comport DF1 port from which to fetch a packet/status.

DF1_Pkt pointer to the array into which the packet is to be stored.

length pointer to the variable into which the length of the packet
is to be stored.

DF1_Stat pointer to a structure of type RSPRCV. This is the pointer
to the array into which the response packet status will be
stored.

Description:

MVIdf1_HDMGetRespPkt determines if a response packet/status is
available from the designated port. A response packet is a packet
returned from a slave in response to an enquiry by the master. The
response packet may be a reply packet to a command or it may be a
slave-initiated packet. Slave-to-slave packets will not be passed to the
application.

The status of the response packet, returned in DF1_Stat, is critical to the
application for proper processing of the response packet:

• If the RespStatus field of DF1_Stat is equal to RESP_VALID, then
the application layer packet in DF1_Pkt is valid and the length of
the packet is contained in length. Also, the Src, Cmd and TNS
fields of DF1_Stat contain the source, command and transaction
number for the response packet.

• If the RespStatus field of DF1_Stat is equal to RESP_TIMEOUT,
the application layer packet in DF1_Pkt, as well as the length
field, is invalid. In this case, the Src, Cmd, and TNS fields of
DF1_Stat contain the source, command, and transaction number
of a command which has not received a reply packet within the
time limit determined by the parameter MsgApplTimeout. See
MVIdf1_HDMOpenPort.
Publication 1756-UM008A-EN-P - June 2000

2-10 DF1 Half-Duplex Master API
Each call to MVIdf1_HDMGetRespPkt returns a single response packet/
status. To retrieve all current response packet/status information the
application should continue to call MVIdf1_HDMGetRespPkt until the
return value is MVI_ERR_NODATA. Once the response packet/status
has been retrieved, it is longer available to the application; therefore,
the application must process each packet/status immediately after it is
retrieved.

DF1_Pkt is a pointer to an array where the application layer data will
be stored. Only the application layer data will be stored to this array,
not the entire DF1 packet.

length is a pointer where the length of the returned packet will be
stored.

DF1_Stat is a pointer to a structure of type RSPRCV. The RSPRCV
structure is defined below:

typedef struct tagRSPRCV

{
BYTE Src; // Source address of received response packet
BYTE Cmd; // Command value of received response packet
WORD TNS; // TNS count for response packet
BYTE RespStatus; // Receive status of the response packet

}RSPRCV;

Src The source node value of the reply packet. Note: this is the
destination node value in the associated command packet.

Cmd The command code of the reply packet.

TNS The transaction number of the reply packet

RespStatus returned will be one of the following:

• RESP_VALID = The data-link layer packet in DF1_Pkt is a valid
packet and the length of the packet is contained in *length. Also,
the Src, Cmd, and TNS fields of DF1_Stat contain the source,
command and transaction number for the response packet.

• RESP_TIMEOUT = The data-link layer packet in DF1_Pkt and the
length are invalid. The Src, Cmd, and TNS fields of DF1_Stat are
associated with a command packet which has not received a
reply packet within the time limit determined by the parameter
MsgApplTimeout. See MVIdf1_HDMOpenPort.

MVIdf1_HDMGetRespPkt
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-11
Return Value:

MVI_SUCCESS Packet retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NODATA No packet available

Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
RSPRCV DF1_Stat;
WORD length;

if (MVIdf1_HDMGetRespPkt(COM1,DF1_Pkt,&length,&DF1_Stat) ==
MVI_SUCCESS) {

 printf (“Response packet/status available. \n”);
}

See Also:

MVIdf1_HDMPutPkt

MVIdf1_HDMGetRespPkt
Publication 1756-UM008A-EN-P - June 2000

2-12 DF1 Half-Duplex Master API
MVIdf1_HDMPutPkt

Syntax:

int MVIdf1_HDMPutPkt (BYTE comport, BYTE *DF1_Pkt, WORD
*length);

Parameters:

comport DF1 port to which to send a packet.

DF1_Pkt pointer to array from which the packet is to be retrieved.

length pointer to variable from which the length of the packet
will be retrieved.

Description:

MVIdf1_HDMPutPkt takes the application layer data from the array
pointed to by DF1_Pkt and places it into the source buffer for
transmission. The length of the data is the variable pointed to by
length. The data passed to this function is only the application layer
data, not the entire DF1 packet.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set.

DF1_Pkt is a pointer to an array from which the application layer data
will be retrieved. The application should store only the application
layer data, not the entire DF1 packet.

length is a pointer to the variable that contains the length of the packet
to be stored for transmission.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
WORD length;

if (MVIdf1_HDMPutPkt(COM1,DF1_Pkt,&length) == MVI_SUCCESS) {
printf (“Packet stored for transmission. \n”);

}

See Also:

MVIdf1_HDMGetRespPkt

MVIdf1_HDMGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-13
MVIdf1_HDMGetPktStat

Syntax:

int MVIdf1_HDMGetPktStat (BYTE comport, SRCXMT *DF1_Stat);

Parameters:

comport DF1 port on which to request packet status.

DF1_Stat pointer to a structure of type SRCXMT. The SRCXMT
structure is defined below in the Description.

Description:

This function returns the status of a packet that has been placed into the
source buffer, by the MVIdf1_HDMPutPkt function, for transmission. A
transmit status queue is maintained to provide the application with
information for each packet placed in the source buffer for
transmission.

The transmit status queue contains the status of each packet which has
terminated transmission (pass or fail) as well as the status of a packet
which may be in the process of being transmitted. The status of packets
that have not yet begun transmission will not be in the queue.

Each call to this function returns the status of one packet. Once the
status of a packet is reported, that packet’s status is removed from the
queue and the next query will return the status of the next packet in the
status queue.

The last packet status in the queue may be the status of a packet in the
process of being transmitted. This packet’s status will be returned but it
will not be removed from the queue until the query is made when the
packet’s transmission has been terminated.

The SRCXMT structure is defined below:

typedef struct tagSRCXMT
{

BYTE Src; // Source node of application layer data
BYTE Cmd; // Command code of application layer data
WORD TNS; // TNS number for application packet
BYTE XmitStatus; // Transmit status of the packet

}SRCXMT;

Src The source node value found in the application layer data
of the packet.

Cmd The command code found in the application layer data of
the packet.

TNS The transaction number found in the application layer data
of the packet.
Publication 1756-UM008A-EN-P - June 2000

2-14 DF1 Half-Duplex Master API
XmitStatus The status of the packet, where:

MVIDF1_XMITTING = packet currently being transmitted.

MVIDF1_SUCCESS = packet has been successfully
transmitted.

MVIDF1_FAILED = packet transmission failed.

Note: The Src, Cmd, and TNS values are to be used by the application
to identify the packet to which the status information, XmitStatus,
pertains.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set, for a detailed explanation of the Src, Cmd,
and TNS elements of the application layer data.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NOSTAT No packet status available

Example:

SRCXMTDF1_Stat;

if (MVIdf1_HDMPutPkt(COM1,&DF1_Stat) == MVI_SUCCESS) {
 printf (“Packet status available. \n”);
}

See Also:

MVIdf1_HDMPutPkt

MVIdf1_HDMGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-15
MVIdf1_HDMGetDiagnostics

Syntax:

int MVIdf1_HDMGetDiagnostics (BYTE comport, WORD *DF1_Diag,
BYTE DF1_DiagNum,BYTE reset);

Parameters:

comport DF1 port from which to fetch a diagnostic counter
value

DF1_Diag pointer to the variable in which to store the counter
value

DF1_DiagNum number of diagnostic counter to retrieve

reset reset/no-reset flag for diagnostic counter

Description:

MVIdf1_HDMGetDiagnostics retrieves the value of the designated
diagnostic counter. Depending on the value of reset, the counter may or
may not be reset to a value of zero.

The diagnostic counters may be used by the application to track and
analyze communications problems, monitor packet flow, and to allow
link optimization.

DF1_Diag is a pointer to a variable in which to store the diagnostic
counter value. These counters will roll over to a value of zero if allowed
to increment without monitoring and control.

DF1_DiagNum is the number of the desired diagnostic counter value
where:

PACKETS_RCVD = 0x00 = Number of valid packets received from
the DF1 master.

POLLS_RCVD = 0x01 = Number of polls received from the DF1
master.

NAKS_RCVD = 0x02 = Number of NAKs received from the DF1
master.

BAD_CRC_BCC = 0x03 = Number of packets received with invalid
error checks.

DUPS_RCVD = 0x04 = Number of duplicate packets received. This
counter is only active if duplicate packet detection is enabled.

PACKETS_XMITTED = 0x05 = Total number of packets transmitted.
This value includes message re-transmissions.

SINK_FULL = 0x06 = Number of received packets which have been
rejected because the sink (receive) buffer is full. This number
indicates that the application may not be retrieving received packets
in a timely manner.
Publication 1756-UM008A-EN-P - June 2000

2-16 DF1 Half-Duplex Master API
SOURCE_FULL = 0x07 = Number of transmit packets which have
been rejected because the source (transmit) buffer is full. This
number indicates that the DF1 master may not be polling the DF1
slave in a timely manner.

MESSAGE_RETRIES = 0x08 = Number of packets which have been
re-transmitted.

reset determines if the diagnostic counter is or is not reset to a value of
zero. A value of non-zero will reset the counter.

Return Value:

MVI_SUCCESS Packet retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

WORDDF1_Diag;

if (MVIdf1_HDMGetDiagnostics(COM1,&DF1_Diag,PACKETS_RCVD,0x00) ==
MVI_SUCCESS) {
 printf (“Total number of packets received is %u, \n”, DF1_Diag);
// The counter has not been reset
}

MVIdf1_HDMGetDiagnostics
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Master API 2-17
MVIdf1_Get VersionInfo

Syntax:

int MVI df1_GetVersionInfo(MVIDF1VERSIONINFO *verinfo);

Parameters:

verinfo pointer to structure of type MVIDF1VERSIONINFO

Description:

MVI df1_GetVersionInfo retrieves the current version of the API. The
version information is returned in the structure verinfo.

The MVIDF1VERSIONINFO structure is defined as follows:

typedef struct tagMVIDF1VERSIONINFO
{
WORDAPISeries;/* API series */
WORDAPIRevision;/* API revision */
} MVIDF1VERSIONINFO;

Return Value:

MVI_SUCCESS The version information was read successfully.

Example:

MVIDF1VERSIONINFO verinfo;

/* print version of API library */
MVI df1_GetVersionInfo(&verinfo);
printf(“Library Series %d, Rev %d\n”, verinfo.APISeries, verinfo.APIRevision);
Publication 1756-UM008A-EN-P - June 2000

2-18 DF1 Half-Duplex Master API
Publication 1756-UM008A-EN-P - June 2000

Chapter 3

DF1 Half-Duplex Slave API

The DF1 Half-Duplex Slave (HDS) API is one component of the
1756-MVI API Suite. The DF1 HDS API allows applications to
communicate, via the serial ports, with a device that uses the
Half-Duplex Master DF1 protocol. The DF1 HDS API functions
implement the DF1 HDS protocol to the Data-link Layer.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set.

The DF1 HDS API provides a common applications interface for all of
the Rockwell Automation and third party modules in the MVI family.
This common interface allows application portability between modules
in the family.

What This Chapter Contains The following table identifies what this chapter contains and where to
find specific information.

DF1 Half-Duplex
Slave API Functions

This section provides detailed programming information for each of the
API library functions. The calling convention for each API function is
shown in C format.

The API library routines are categorized according to functionality as
shown in table 3.A.

More

For information about See page
DF1 Half-Duplex Slave API Functions 3-1

Initialization Functions 3-2

Communications 3-6

Table 3.A DF1 Half-Duplex Slave API Functions

Function Category Function Name Description

Initialization MVIdf1_HDSOpenPort Initialize access to a DF1 serial port.

MVIdf1_HDSClosePort Terminate access to a DF1 serial port.

Communications MVIdf1_HDSGetPkt Fetch a received packet

MVIdf1_HDSPutPkt Place a packet for transmission

MVIdf1_HDSGetPktStat Fetch the status of a transmitted packet

MVIdf1_HDSGetDiagnostics Fetch the value of one of the diagnostic counters

Miscellaneous MVIdf1_HDSGetVersionInfo Get the DF1 HDS API version information
1 Publication 1756-UM008A-EN-P - June 2000

3-2 DF1 Half-Duplex Slave API
Initialization Functions

MVIdf1_HDSOpenPort

Syntax:

int MVIdf1_HDSOpenPort (HDSCFG *DF1Config);

Parameters:

DF1Config Pointer to a structure of type HDSCFG. The HDSCFG
structure is defined below in the Description section.

Description:

MVIdf1_HDSOpenPort acquires access to a communications port,
configures a DF1 Half-Duplex Slave communications program for that
port and then begins execution of that communications program as a
background task. This function must be called before any of the other
API functions can be used.

The HDSCFG structure is defined below:

typedef struct tagHDSCFG
{

BYTE Baud; // Desired baud rate
BYTE Parity; // Desired parity
BYTE Stop; // Desired stop bits
BYTE DupPacket; // Duplication packet detection enable/disable
BYTE ErrorDet; // Error detection selection: BCC or CRC
BYTE Station; // Station address.
BYTE MsgRetries; // Number of times a single message will be

// transmitted in response to a poll from the master
BYTE Handshake; // Hardware handshake control;

// 0=none
// 1=half-dup, w/o continuous carrier
// 2=half-dup, with continuous carrier

WORD RTSOn; // The RTS send delay in increments of X mS
WORD RTSOff; // The RTS off delay in increments of X mS
int ComPort; //

} HDSCFG;

ComPort specifies which port is to be opened. The valid values for the
1756AV-MVI module are COM1 (corresponds to PRT1), COM2
(corresponds to PRT2), and COM3 (corresponds to PRT3).
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Slave API 3-3
Baud is the desired baud rate. The allowable values for Baud are
shown in table 3.B.

Valid values for Parity are PARITY_NONE, PARITY_ODD,
PARITY_EVEN, PARITY_MARK, and PARITY_SPACE.

The number of stop bits is set by Stop. Valid values for Stop are
STOPBITS1 and STOPBITS2.

DupPacket determines if duplicate packet detection is enabled or
disabled. Valid values for DupPacket are DUP_PACKET_ENA and
DUP_PACKET_DIS. When enabled, a counter indicating the number of
duplicate packets received is maintained. See
MVIdf1_HDSGetDiagnostics.

ErrorDet determines the type of error detection. Valid values for
ErrorDet are CRC_ERROR_CHK (cyclic redundancy check) and
BCC_ERROR_CHK (block check character). A counter indicating the
number of packets received with an invalid error check value is
maintained. See MVIdf1_HDSGetDiagnostics.

Station sets the station number. The valid range is 0-254. Station
number 255 should not be used as it is reserved as a broadcast message
designation.

MsgRetries sets the number of times a single message will be transmitted
in response to a poll from the master. The range is 1-255. Once this
limit is reached, the status of the message is set to “failed”. See
MVIdf1_HDSGetPktStat.

Handshake determines whether or not hardware handshaking is
enabled and if enabled, the type of handshaking used. Valid values are
to be determined.

MVIdf1_HDSOpenPort

Table 3.B - Valid Baud Rates

Baud Rate Value
BAUD_110 0
BAUD_150 1
BAUD_300 2
BAUD_600 3
BAUD_1200 4
BAUD_2400 5
BAUD_4800 6
BAUD_9600 7
BAUD_19200 8
BAUD_28800 9
BAUD_38400 10
BAUD_57600 11
BAUD_115200 12
Publication 1756-UM008A-EN-P - June 2000

3-4 DF1 Half-Duplex Slave API
RTSOn is the time delay of the transmission of a packet after the RTS
output line is activated. This delay only applies when hardware
handshaking is active.

Note: If the console is enabled or the Setup jumper is installed, the
baud rate for COM1 is set as configured in BIOS Setup and cannot be
changed by MVIdf1_HDSOpenPort. MVIdf1_HDSClosePort will return
MVI_SUCCESS, but the baud rate will not be affected. It is
recommended that the console be disabled in BIOS Setup if COM1 is to
be accessed with the DF1 HDS API.

Return Value:

MVI_SUCCESS DF1 port was opened successfully

MVI_ERR_REOPEN DF1 port is already open

MVI_ERR_NODEVICE UART not found on port

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_OS Error occurred in DOS 6-XL operating system

Note: MVI_ERR_NODEVICE will be returned if the port is not
supported by the module.

Example:

HDSCFG Port1Cfg;

if (MVIdf1_HDSOpenPort(&PortCfg) != MVI_SUCCESS) {
 printf(“Open failed!\n”);
} else {
 printf(“Open succeeded\n”);
}

See Also:

MVIdf1_HDSClosePort

MVIdf1_HDSOpenPort

IMPORTANT Once the DF1 port has been opened,
MVIdf1_HDSClosePort should always be called before
exiting the application.
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Slave API 3-5
MVIdf1_HDSClosePort

Syntax:

int MVIdf1_HDSClosePort (BYTE comport);

Parameters:

comport DF1 port to close

Description:

MVIdf1_HDSClosePort is used by the application to release control of
the designated communications port. The application must have
previously opened the comport with the MVIdf1_HDSOpenPort API.

Return Value:

MVI_SUCCESS DF1 port was closed successfully

MVI_ERR_NOACCESS DF1 has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

MVIdf1_HDSClosePort(COM1);

See Also:

MVIdf1_HDSOpenPort

IMPORTANT Once the DF1 port has been opened , this function
should always be called before exiting the
application.
Publication 1756-UM008A-EN-P - June 2000

3-6 DF1 Half-Duplex Slave API
Communications

MVIdf1_HDSGetPkt

Syntax:

int MVIdf1_HDSGetPkt (BYTE comport, BYTE *DF1_Pkt,
WORD *length);

Parameters:

comport DF1 port from which to fetch a packet.

DF1_Pkt pointer to the array into which the packet is to be stored.

length pointer to the variable into which the length of the packet
is to be stored.

Description:

MVIdf1_HDSGetPkt determines if a packet is available from the
designated port. If available, the application layer data, not the entire
DF1 packet, is retrieved.

For more information, refer to Allen-Bradley publication number
1770-6.5.16, DF1 Protocol and Command Set.

DF1_Pkt is a pointer to an array where the application layer data will
be stored. Only the application layer data will be stored to this array,
not the entire DF1 packet.

length is a pointer where the length of the returned packet will be
stored.

Return Value:

MVI_SUCCESS Packet retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NODATA No packet available

Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
WORD length;

if (MVIdf1_HDSGetPkt(COM1,DF1_Pkt,&length) == MVI_SUCCESS) {
 printf (“Packet available. \n”);
}

See Also:

MVIdf1_HDSPutPkt

More
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Slave API 3-7
MVIdf1_HDSPutPkt

Syntax:

int MVIdf1_HDSPutPkt (BYTE comport, BYTE *DF1_Pkt,
WORD *length);

Parameters:

comport DF1 port from which to fetch a packet.

DF1_Pkt pointer to array from which the packet is to be retrieved.

length pointer to variable from which the length of the packet
will be retrieved.

Description:

MVIdf1_HDSPutPkt takes the application layer data from the array
pointed to by DF1_Pkt and places it into the source buffer for
transmission. The length of the data is the variable pointed to by
length. The data passed to this function is only the application layer
data, not the entire DF1 packet.

For more information, refer to Allen-Bradley publication number
1770-6.5.16, DF1 Protocol and Command Set.

DF1_Pkt is a pointer to an array from which the application layer data
will be retrieved. The application should store only the application
layer data, not the entire DF1 packet.

length is a pointer to the variable that contains the length of the packet
to be stored for transmission.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

BYTE DF1_Pkt[MAX_DF1_BUFR];
WORD length;

if (MVIdf1_HDSPutPkt(COM1,DF1_Pkt,&length) == MVI_SUCCESS) {
printf (“Packet stored for transmission. \n”);

}

See Also:

MVIdf1_HDSGetPkt

MVIdf1_HDSGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

3-8 DF1 Half-Duplex Slave API
MVIdf1_HDSGetPktStat

Syntax:

int MVIdf1_HDSGetPktStat (BYTE comport, SRCXMT *DF1_Stat);

Parameters:

comport DF1 port on which to request packet status.

DF1_Stat DF1_Stat is a pointer to a structure of type SRCXMT. The
SRCXMT structure is defined below in the Description.

Description:

This function returns the status of a packet that has been placed into the
source buffer, by the MVIdf1_PutPkt function, for transmission. A
transmit status queue is maintained to provide the application with
information for each packet placed in the source buffer for
transmission.

The transmit status queue contains the status of each packet which has
terminated transmission (pass or fail) as well as the status of a packet
which may be in the process of being transmitted. The status of packets
that have not yet begun transmission will not be in the queue.

Each call to this function returns the status of one packet. Once the
status of a packet is reported, that packet’s status is removed from the
queue and the next query will return the status of the next packet in the
status queue.

The last packet status in the queue may be the status of a packet in the
process of being transmitted. This packet’s status will be returned but it
will not be removed from the queue until the query is made when the
packet’s transmission has been terminated.

The SRCXMT structure is defined below:

typedef struct tagSRCXMT
{

BYTE Src; // Source node of application layer data
BYTE Cmd; // Command code of application layer data
WORD TNS; // TNS number for application packet
BYTE XmitStatus; // Transmit status of the packet

}SRCXMT;

Src the source node value found in the application layer data of
the packet

Cmd the command code found in the application layer data of
the packet

TNS the transaction number found in the application layer data
of the packet
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Slave API 3-9
XmitStatus the status of the packet, where:

MVIDF1_XMITTING = packet currently being transmitted

MVIDF1_SUCCESS = packet has been successfully
transmitted

MVIDF1_FAILED = packet transmission failed

Note: The Src, Cmd, and TNS values are to be used by the application
to identify the packet to which the status information, XmitStatus,
pertains.

Please refer to Allen-Bradley publication number 1770-6.5.16, DF1
Protocol and Command Set, for a detailed explanation of the Src, Cmd,
and TNS elements of the application layer data.

Return Value:

MVI_SUCCESS Packet stored successfully for transmission

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

MVI_ERR_NOSTAT No packet status available

Example:

SRCXMTDF1_Stat;

if (MVIdf1_HDSPutPkt(COM1,&DF1_Stat) == MVI_SUCCESS) {
 printf (“Packet status available. \n”);
}

See Also:

MVIdf1_HDSPutPkt

MVIdf1_HDSGetPktStat

More
Publication 1756-UM008A-EN-P - June 2000

3-10 DF1 Half-Duplex Slave API
MVIdf1_HDSGetDiagnostics

Syntax:

int MVIdf1_HDSGetDiagnostics (BYTE comport, WORD *DF1_Diag,
BYTE DF1_DiagNum,BYTE reset);

Parameters:

comport DF1 port from which to fetch a diagnostic counter value

DF1_Diag pointer to the variable in which to store the counter
value

DF1_DiagNum number of diagnostic counter to retrieve

reset reset/no-reset flag for diagnostic counter

Description:

MVIdf1_HDSGetDiagnostics retrieves the value of the designated
diagnostic counter. Depending on the value of reset, the counter may or
may not be reset to a value of zero.

The diagnostic counters may be used by the application to track and
analyze communications problems, monitor packet flow and to allow
link optimization.

DF1_Diag is a pointer to a variable in which to store the diagnostic
counter value. These counters will roll over to a value of zero if allowed
to increment without monitoring and control.

DF1_DiagNum is the number of the desired diagnostic counter value
where:

PACKETS_RCVD = 0x00 = Number of valid packets received from
the DF1 master.

POLLS_RCVD = 0x01 = Number of polls received from the DF1
master.

NAKS_RCVD = 0x02 = Number of NAKs received from the DF1
master.

BAD_CRC_BCC = 0x03 = Number of packets received with invalid
error checks.

DUPS_RCVD = 0x04 = Number of duplicate packets received. This
counter is only active if duplicate packet detection is enabled.

PACKETS_XMITTED = 0x05 = Total number of packets transmitted.
This value includes message re-transmissions.

SINK_FULL = 0x06 = Number of received packets which have been
rejected because the sink (receive) buffer is full. This number
indicates that the application may not be retrieving received packets
in a timely manner.
Publication 1756-UM008A-EN-P - June 2000

DF1 Half-Duplex Slave API 3-11
SOURCE_FULL = 0x07 = Number of transmit packets which have
been rejected because the source (transmit) buffer is full. This
number indicates that the DF1 master may not be polling the DF1
slave in a timely manner.

MESSAGE_RETRIES = 0x08 = Number of packets which have been
re-transmitted.

reset determines if the diagnostic counter is or is not reset to a value of
zero. A value of non-zero will reset the counter.

Return Value:

MVI_SUCCESS Packet retrieved successfully

MVI_ERR_NOACCESS Port has not been opened

MVI_ERR_BADPARAM Invalid parameter (port number out of range)

Example:

WORDDF1_Diag;

if (MVIdf1_HDSGetDiagnostics(COM1,&DF1_Diag,PACKETS_RCVD,0x00) ==
MVI_SUCCESS) {
 printf (“Total number of packets received is %u, \n”, DF1_Diag);
// The counter has not been reset
}

MVIdf1_HDSGetDiagnostics
Publication 1756-UM008A-EN-P - June 2000

3-12 DF1 Half-Duplex Slave API
Publication 1756-UM008A-EN-P - June 2000

Index

A
about this addendum P-1 to P-3

audience P-1
contents P-1
introduction P-1
reference publications P-2

audience P-1

D
DF1 full-duplex API functions 1-1 to 1-15

communications 1-7 to 1-15
MVIdf1_FDGetDiagnostics 1-13
MVIdf1_FDGetPkt 1-7
MVIdf1_FDGetPktStat 1-11
MVIdf1_FDGetVersionInfo 1-15
MVIdf1_FDPutPkt 1-10

initialization 1-2 to 1-6
MVIdf1_FDClosePort 1-6
MVIdf1_FDOpenPort 1-2

DF1 half-duplex master API functions 2-1 to 2-17
communications 2-9 to 2-17

MVIdf1_GetVersionInfo 2-17
MVIdf1_HDMGetDiagnostics 2-15
MVIdf1_HDMGetPktStat 2-13
MVIdf1_HDMGetRespPkt 2-9
MVIdf1_HDMPutPkt 2-12

initialization 2-2 to 2-8

MVIdf1_HDMClosePort 2-8
MVIdf1_HDMOpenPort 2-2

DF1 half-duplex slave API functions 3-1 to 3-11
communications 3-6 to 3-11

MVIdf1_HDSGet Diagnostics 3-10
MVIdf1_HDSGetPkt 3-6
MVIdf1_HDSGetPktStat 3-8
MVIdf1_HDSPutPkt 3-7

initialization 3-2 to 3-5
MVIdf1_HDSClosePort 3-5
MVIdf1_HDSOpenPort 3-2

H
help

Rockwell Automation support P-2

Q
questions or comments about manual P-3

R
reference publications P-2
Rockwell Automation support P-2

S
support and technical assistance P-2
Publication 1756-UM008A-EN-P - June 2000

2 Index
Publication 1756-UM008A-EN-P - June 2000

Allen-Bradley
Publication Problem Report
If you find a problem with our documentation, please complete and return this form.
Pub. Name ControlLogix Multi-Vendor Interface Module DF1 API User Manual

Cat. No. 1756-MVI Pub. No. 1756-UM008A-EN-P Pub. Date June 2000 Part No. 957234-43

Check Problem(s) Type: Describe Problem(s) Internal Use Only

Technical Accuracy text illustration

Completeness procedure/step illustration definition info in manual

What information is missing? example guideline feature (accessibility)

explanation other info not in

Clarity

What is unclear?

 Sequence

What is not in the right order?

Other Comments

Use back for more comments.

Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440) 646-3176
FAX: (440) 646-4320
Publication 1756-UM008A-EN-P - June 2000 957234-43

Other Comments

PLEASE FOLD HERE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

PLEASE FASTEN HERE (DO NOT STAPLE)

PL
EA

SE
 R

EM
OV

E

Publication 1756-UM008A-EN-P - June 2000 PN 957234-43
© 2000 Rockwell International Corporation. Printed in the U.S.A.

Back Cover

ControlLogix M
ulti-Vendor Interface M

odule DF1 API
User M

anual

	Important User Information
	European Communities (EC) Directive Compliance
	EMC Directive
	Low Voltage Directive

	Preface
	About This User Manual
	Introduction
	Audience
	Contents
	References
	Rockwell Automation Support
	Local Product Support
	Technical Product Assistance
	Your Questions or Comments about This Manual

	Table of Contents
	Chapter 1
	DF1 Full-Duplex API
	Chapter 2

	DF1 Half-Duplex Master API
	Chapter 3

	DF1 Half-Duplex Slave API
	Index

	Chapter 1
	DF1 Full-Duplex API
	What This Chapter Contains
	DF1 Full-Duplex API Functions
	Table 1.A DF1 Full-Duplex API Functions
	Initialization Functions
	Table 1.B - Valid Baud Rates

	Communications

	Chapter 2
	DF1 Half-Duplex Master API
	What This Chapter Contains
	DF1 Half-Duplex Master API Functions
	Table 2.A DF1 Half-Duplex Master API Functions
	Initialization Functions
	Table 2.B - Valid Baud Rates

	Communications

	Chapter 3
	DF1 Half-Duplex Slave API
	What This Chapter Contains
	DF1 Half-Duplex Slave API Functions
	Table 3.A DF1 Half-Duplex Slave API Functions
	Initialization Functions
	Table 3.B - Valid Baud Rates

	Communications

	Index
	A
	D
	H
	Q
	R
	S

	Back Cover

